共 50 条
WEIGHTED NORM INEQUALITIES FOR DE BRANGES-ROVNYAK SPACES AND THEIR APPLICATIONS
被引:0
|作者:
Baranov, Anton
[1
]
Fricain, Emmanuel
[2
]
Mashreghi, Javad
[3
]
机构:
[1] St Petersburg State Univ, Dept Math & Mech, St Petersburg 198504, Russia
[2] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
[3] Univ Laval, Dept Math & Stat, Quebec City, PQ G1K 7P4, Canada
基金:
加拿大自然科学与工程研究理事会;
关键词:
STAR-INVARIANT SUBSPACES;
RELATIVE ANGULAR DERIVATIVES;
REPRODUCING KERNELS;
MODEL SPACES;
CARLESON MEASURES;
RADIAL LIMITS;
BASES;
EMBEDDINGS;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let H(b) denote the de Branges-Rovnyak space associated with a function b in the unit ball of HI(C,). We study the boundary behavior of the derivatives of functions in H(b) and obtain weighted norm estimates of the form parallel to f((n))parallel to(L2(mu)) <= C parallel to f parallel to(H(b)), where f epsilon H(b) and mu is a Carleson-type measure on C+ boolean OR R. We provide several applications of these inequalities. We apply them to obtain embedding theorems for H(b) spaces. These results extend Cohn and Volberg-Treil embedding theorems for the model (star-invariant) subspaces which are special classes of de Branges-Rovnyak spaces. We also exploit the inequalities for the derivatives to study stability of Riesz bases of reproducing kernels {k(lambda n)(b)} in H(b) under small perturbations of the points lambda(n).
引用
收藏
页码:125 / 155
页数:31
相关论文