Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D

被引:0
|
作者
Aminreza Mohandes
Mahmood Moradi
Hamid Nadgaran
机构
[1] Shiraz University,Department of Physics, College of Science
来源
关键词
Cs; AgBiBr; Double perovskite solar cell; Lead-free perovskite; Conduction band offset (CBO); Valence band offset (VBO); SCAPS;
D O I
暂无
中图分类号
学科分类号
摘要
Double perovskite, Cs2AgBiBr6, is introduced as a lead-free perovskite solar cell. Device modeling of Cs2AgBiBr6 (DP) was accomplished to obtain the optimum parameters using the Solar Cell Capacitance Simulator (SCAPS). Two devices with two different hole transport layers (HTLs) were investigated, including P3HT and Cu2O. For both devices with different HTLs, an optimal thicknesses of 1200 nm and defect densities of 1.0×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0\times$$\end{document} 1014 cm−3 for DP layer were attained. For both HTLs, conduction band offset, CBO, is − 0.21 eV and valence band offset, VBO, is + 0.16 eV. For shallow acceptor doping concentration of P3HT and Cu2O, the values of 5.0×1019\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times {10}^{19}$$\end{document} and 5.0×1017cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times {10}^{17}\,{\mathrm{cm}}^{-3}$$\end{document} were obtained, respectively. As far as the shallow donor density of electron transport layers (ETLs) is concerned, for both cases, the optimum value of 5.0×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times$$\end{document} 1019 cm−3 were achieved. For capture cross section,σn,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p}$$\end{document}, in absorber layer for both HTLs, the optimal value at σn,pof10-20cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-20}\, {\mathrm{cm}}^{2}$$\end{document} for Nt,DP(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP} ($$\end{document}defect density of DP) is1016cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{is} {10}^{16} \,{\mathrm{cm}}^{-3}$$\end{document}, at σn,pof10-19cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-19} \,{\mathrm{cm}}^{2}$$\end{document} for Nt,DPis1015cm-3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{15} \,{\mathrm{cm}}^{-3},$$\end{document} at σn,pof10-18cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-18} \,{\mathrm{cm}}^{2}$$\end{document} forNt,DPis1014cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{14} \,{\mathrm{cm}}^{-3}$$\end{document}, at σn,pof10-17cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-17}\, {\mathrm{cm}}^{2}$$\end{document} forNt,DPis1013cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{13}\, {\mathrm{cm}}^{-3}$$\end{document}, and at σn,pof10-16cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-16} \,{\mathrm{cm}}^{2}$$\end{document} forNt,DPis1012cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{12} \,{\mathrm{cm}}^{-3}$$\end{document}. For P3HT device, the interface defect density of P3HT/Cs2AgBiBr6 is occurred at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1014 cm−2, and for Cs2AgBiBr6/SnO2 is happened at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 109 cm−2. For Cu2O device, the interface defect density of Cu2O/Cs2AgBiBr6 is befallen at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1013 cm−2, and for Cs2AgBiBr6/SnO2 is happened at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1010 cm−2. As for radiative recombination, for P3HT device, the optimal value is happened at 2.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 10−13 cm3/s, however, for Cu2O device is occurred at 2.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 10−12 cm3/s. Finally, for P3HT device, a maximum power conversion efficiency, PCE, of 11.69% (open-circuit voltage, Voc, of 2.02 V, short-circuit current density, Jsc, of 6.39 mA/cm2, and fill-factor, FF, of 0.90 (90%)) were achieved, and for Cu2O device, a PCE of 11.32% (Voc of 1.97 V, Jsc of 6.39 mA/cm2, and FF of 0.895 (89.5%)) were attained. This is the highest efficiency for Cs2AgBiBr6 double perovskite solar cell which was achieved till now. Finally, our results are providing towards fabricating a lead-free and inorganic solar cell.
引用
收藏
相关论文
共 50 条
  • [21] Numerical investigation of the novel lead-free and eco-friendly InSnCl3-based inorganic perovskite solar cell using SCAPS-1D device simulation
    Garmim, T.
    Soussi, L.
    Benaissa, N.
    El Boughdadi, M.
    Rhalmi, O.
    El Jouad, Z.
    El Bachiri, A.
    Louardi, A.
    Monkade, M.
    JOURNAL OF OPTICS-INDIA, 2024,
  • [22] Simulation study on lead-free double Cs2AgBiBr6/GaAs tandem solar cells
    Yu, M. J.
    Yuan, J. R.
    Deng, X. H.
    JOURNAL OF OVONIC RESEARCH, 2025, 21 (01): : 1 - 18
  • [23] Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell
    Zeyu Zhang
    Qingde Sun
    Yue Lu
    Feng Lu
    Xulin Mu
    Su-Huai Wei
    Manling Sui
    Nature Communications, 13
  • [24] Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell
    Zhang, Zeyu
    Sun, Qingde
    Lu, Yue
    Lu, Feng
    Mu, Xulin
    Wei, Su-Huai
    Sui, Manling
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [25] Low temperature synthesis of Cs2AgBiBr6 lead-free perovskite for flexible photodetector
    Bangqi Jiang
    Genghua Yan
    Yao Xiao
    Ye Yuan
    Chuanxi Zhao
    Wenjie Mai
    Ruijiang Hong
    Journal of Materials Science, 2023, 58 : 7076 - 7091
  • [26] Cs2AgBiBr6 Double Perovskites as Lead-Free Alternatives for Perovskite Solar Cells?
    Tress, Wolfgang
    Sirtl, Maximilian T.
    SOLAR RRL, 2022, 6 (02)
  • [27] Numerical simulation and optimization of lead-based perovskite solar cell with inorganic HTL using SCAPS-1D
    Pandey, Vaibhav
    Gupta, Abhishek Kumar
    Shriwastav, Mayank
    JOURNAL OF OPTICS-INDIA, 2023, 53 (3): : 2038 - 2046
  • [28] Numerical simulation and optimization of lead-based perovskite solar cell with inorganic HTL using SCAPS-1D
    Pandey, Vaibhav
    Gupta, Abhishek Kumar
    Shriwastav, Mayank
    JOURNAL OF OPTICS-INDIA, 2024, 53 (03): : 2038 - 2046
  • [29] Advancing Lead-Free Cs2AgBiBr6 perovskite solar cells: Challenges and strategies
    Zhai, Mengde
    Chen, Cheng
    Cheng, Ming
    SOLAR ENERGY, 2023, 253 : 563 - 583
  • [30] Low temperature synthesis of Cs2AgBiBr6 lead-free perovskite for flexible photodetector
    Jiang, Bangqi
    Yan, Genghua
    Xiao, Yao
    Yuan, Ye
    Zhao, Chuanxi
    Mai, Wenjie
    Hong, Ruijiang
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (16) : 7076 - 7091