Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D

被引:0
|
作者
Aminreza Mohandes
Mahmood Moradi
Hamid Nadgaran
机构
[1] Shiraz University,Department of Physics, College of Science
来源
关键词
Cs; AgBiBr; Double perovskite solar cell; Lead-free perovskite; Conduction band offset (CBO); Valence band offset (VBO); SCAPS;
D O I
暂无
中图分类号
学科分类号
摘要
Double perovskite, Cs2AgBiBr6, is introduced as a lead-free perovskite solar cell. Device modeling of Cs2AgBiBr6 (DP) was accomplished to obtain the optimum parameters using the Solar Cell Capacitance Simulator (SCAPS). Two devices with two different hole transport layers (HTLs) were investigated, including P3HT and Cu2O. For both devices with different HTLs, an optimal thicknesses of 1200 nm and defect densities of 1.0×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0\times$$\end{document} 1014 cm−3 for DP layer were attained. For both HTLs, conduction band offset, CBO, is − 0.21 eV and valence band offset, VBO, is + 0.16 eV. For shallow acceptor doping concentration of P3HT and Cu2O, the values of 5.0×1019\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times {10}^{19}$$\end{document} and 5.0×1017cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times {10}^{17}\,{\mathrm{cm}}^{-3}$$\end{document} were obtained, respectively. As far as the shallow donor density of electron transport layers (ETLs) is concerned, for both cases, the optimum value of 5.0×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times$$\end{document} 1019 cm−3 were achieved. For capture cross section,σn,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p}$$\end{document}, in absorber layer for both HTLs, the optimal value at σn,pof10-20cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-20}\, {\mathrm{cm}}^{2}$$\end{document} for Nt,DP(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP} ($$\end{document}defect density of DP) is1016cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{is} {10}^{16} \,{\mathrm{cm}}^{-3}$$\end{document}, at σn,pof10-19cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-19} \,{\mathrm{cm}}^{2}$$\end{document} for Nt,DPis1015cm-3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{15} \,{\mathrm{cm}}^{-3},$$\end{document} at σn,pof10-18cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-18} \,{\mathrm{cm}}^{2}$$\end{document} forNt,DPis1014cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{14} \,{\mathrm{cm}}^{-3}$$\end{document}, at σn,pof10-17cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-17}\, {\mathrm{cm}}^{2}$$\end{document} forNt,DPis1013cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{13}\, {\mathrm{cm}}^{-3}$$\end{document}, and at σn,pof10-16cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-16} \,{\mathrm{cm}}^{2}$$\end{document} forNt,DPis1012cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{12} \,{\mathrm{cm}}^{-3}$$\end{document}. For P3HT device, the interface defect density of P3HT/Cs2AgBiBr6 is occurred at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1014 cm−2, and for Cs2AgBiBr6/SnO2 is happened at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 109 cm−2. For Cu2O device, the interface defect density of Cu2O/Cs2AgBiBr6 is befallen at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1013 cm−2, and for Cs2AgBiBr6/SnO2 is happened at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1010 cm−2. As for radiative recombination, for P3HT device, the optimal value is happened at 2.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 10−13 cm3/s, however, for Cu2O device is occurred at 2.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 10−12 cm3/s. Finally, for P3HT device, a maximum power conversion efficiency, PCE, of 11.69% (open-circuit voltage, Voc, of 2.02 V, short-circuit current density, Jsc, of 6.39 mA/cm2, and fill-factor, FF, of 0.90 (90%)) were achieved, and for Cu2O device, a PCE of 11.32% (Voc of 1.97 V, Jsc of 6.39 mA/cm2, and FF of 0.895 (89.5%)) were attained. This is the highest efficiency for Cs2AgBiBr6 double perovskite solar cell which was achieved till now. Finally, our results are providing towards fabricating a lead-free and inorganic solar cell.
引用
收藏
相关论文
共 50 条
  • [31] Synthesis and Photocatalytic Application of Stable Lead-Free Cs2AgBiBr6 Perovskite Nanocrystals
    Zhou, Lei
    Xu, Yang-Fan
    Chen, Bai-Xue
    Kuang, Dai-Bin
    Su, Cheng-Yong
    SMALL, 2018, 14 (11)
  • [32] Performance optimization of lead-free MASnBr3 based perovskite solar cells by SCAPS-1D device simulation
    Mushtaq, Shammas
    Tahir, Sofia
    Ashfaq, Arslan
    Bonilla, Ruy Sebastian
    Haneef, Muhammad
    Saeed, Rabia
    Ahmad, Waqas
    Amin, Nasir
    SOLAR ENERGY, 2023, 249 : 401 - 413
  • [33] SCAPS-1D Simulation for Device Optimization to Improve Efficiency in Lead-Free CsSnI3 Perovskite Solar Cells
    Park, Hyun-Jae
    Son, Hyojung
    Jeong, Byoung-Seong
    INORGANICS, 2024, 12 (04)
  • [34] Optimizing key parameters to enhance the performance of lead-free perovskite solar cells with a Cs2AgBiCl6 absorber layer using SCAPS-1D simulation
    Shirazi, Marzieh
    JOURNAL OF OPTICS-INDIA, 2025,
  • [35] Stable and Highly Efficient Photocatalysis with Lead-Free Double-Perovskite of Cs2AgBiBr6
    Zhang, Zhenzhen
    Liang, Yongqi
    Huang, Hanlin
    Liu, Xingyi
    Li, Qi
    Chen, Langxing
    Xu, Dongsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (22) : 7263 - 7267
  • [36] Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite
    Chand Yadav, Subhash
    Srivastava, Abhishek
    Manjunath, Vishesh
    Kanwade, Archana
    Devan, Rupesh S.
    Shirage, Parasharam M.
    Materials Today Physics, 2022, 26
  • [37] Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite
    Yadav, Subhash Chand
    Srivastava, Abhishek
    Manjunath, Vishesh
    Kanwade, Archana
    Devan, Rupesh S.
    Shirage, Parasharam M.
    MATERIALS TODAY PHYSICS, 2022, 26
  • [38] Unveiling the potential of lead-free Cs2AgBiBr6 (CABB) perovskite for solar cell application
    Sahoo, G. S.
    Bhattarai, S.
    Feddi, E.
    Verma, M.
    Rashed, A. N. Z.
    Saidani, O.
    Mishra, G. P.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 271
  • [39] Numerical optimization of lead-based and lead-free absorber materials for perovskite solar cell (PSC) architectures: A SCAPS-1D simulation
    Rahaman, Mostafizur
    Hasan, Mahmudul
    Moinuddin, Rayan Md.
    Islam, Md. Nasirul
    AIP ADVANCES, 2024, 14 (09)
  • [40] Investigation of the potential solar cell application of Cs2AgBiBr6 lead-free double perovskite
    Yadav, Subhash Chand
    Satrughna, Jena Akash Kumar
    Shirage, Parasharam M.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2023, 181