Numerical simulation of inorganic Cs2AgBiBr6 as a lead-free perovskite using device simulation SCAPS-1D

被引:0
|
作者
Aminreza Mohandes
Mahmood Moradi
Hamid Nadgaran
机构
[1] Shiraz University,Department of Physics, College of Science
来源
关键词
Cs; AgBiBr; Double perovskite solar cell; Lead-free perovskite; Conduction band offset (CBO); Valence band offset (VBO); SCAPS;
D O I
暂无
中图分类号
学科分类号
摘要
Double perovskite, Cs2AgBiBr6, is introduced as a lead-free perovskite solar cell. Device modeling of Cs2AgBiBr6 (DP) was accomplished to obtain the optimum parameters using the Solar Cell Capacitance Simulator (SCAPS). Two devices with two different hole transport layers (HTLs) were investigated, including P3HT and Cu2O. For both devices with different HTLs, an optimal thicknesses of 1200 nm and defect densities of 1.0×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.0\times$$\end{document} 1014 cm−3 for DP layer were attained. For both HTLs, conduction band offset, CBO, is − 0.21 eV and valence band offset, VBO, is + 0.16 eV. For shallow acceptor doping concentration of P3HT and Cu2O, the values of 5.0×1019\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times {10}^{19}$$\end{document} and 5.0×1017cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times {10}^{17}\,{\mathrm{cm}}^{-3}$$\end{document} were obtained, respectively. As far as the shallow donor density of electron transport layers (ETLs) is concerned, for both cases, the optimum value of 5.0×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.0\times$$\end{document} 1019 cm−3 were achieved. For capture cross section,σn,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p}$$\end{document}, in absorber layer for both HTLs, the optimal value at σn,pof10-20cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-20}\, {\mathrm{cm}}^{2}$$\end{document} for Nt,DP(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP} ($$\end{document}defect density of DP) is1016cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{is} {10}^{16} \,{\mathrm{cm}}^{-3}$$\end{document}, at σn,pof10-19cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-19} \,{\mathrm{cm}}^{2}$$\end{document} for Nt,DPis1015cm-3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{15} \,{\mathrm{cm}}^{-3},$$\end{document} at σn,pof10-18cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-18} \,{\mathrm{cm}}^{2}$$\end{document} forNt,DPis1014cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{14} \,{\mathrm{cm}}^{-3}$$\end{document}, at σn,pof10-17cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-17}\, {\mathrm{cm}}^{2}$$\end{document} forNt,DPis1013cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{13}\, {\mathrm{cm}}^{-3}$$\end{document}, and at σn,pof10-16cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{n,p} \mathrm{of} {10}^{-16} \,{\mathrm{cm}}^{2}$$\end{document} forNt,DPis1012cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N}_{t,DP}\mathrm{ is} {10}^{12} \,{\mathrm{cm}}^{-3}$$\end{document}. For P3HT device, the interface defect density of P3HT/Cs2AgBiBr6 is occurred at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1014 cm−2, and for Cs2AgBiBr6/SnO2 is happened at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 109 cm−2. For Cu2O device, the interface defect density of Cu2O/Cs2AgBiBr6 is befallen at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1013 cm−2, and for Cs2AgBiBr6/SnO2 is happened at 1.0 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1010 cm−2. As for radiative recombination, for P3HT device, the optimal value is happened at 2.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 10−13 cm3/s, however, for Cu2O device is occurred at 2.3 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 10−12 cm3/s. Finally, for P3HT device, a maximum power conversion efficiency, PCE, of 11.69% (open-circuit voltage, Voc, of 2.02 V, short-circuit current density, Jsc, of 6.39 mA/cm2, and fill-factor, FF, of 0.90 (90%)) were achieved, and for Cu2O device, a PCE of 11.32% (Voc of 1.97 V, Jsc of 6.39 mA/cm2, and FF of 0.895 (89.5%)) were attained. This is the highest efficiency for Cs2AgBiBr6 double perovskite solar cell which was achieved till now. Finally, our results are providing towards fabricating a lead-free and inorganic solar cell.
引用
收藏
相关论文
共 50 条
  • [41] Synthesis and resistive switching performance of lead-free double perovskite Cs2AgBiBr6 films
    Zeng, Fanju
    Tan, Yongqian
    Hu, Wei
    Tang, Xiaosheng
    Yin, Haifeng
    Jing, Tao
    Huang, Lianshuai
    Yang, Yi
    Liao, Juan
    Zhou, Changmin
    APPLIED PHYSICS LETTERS, 2024, 124 (16)
  • [42] In Situ Crystallization of the Inorganic Lead-Free Halide Double Perovskite Cs2AgBiBr6 via Spray-Drying
    Fett, Bastian
    Kabakli, Ozde S.
    Sierra, Camila A. R.
    Schulze, Patricia S. C.
    Yoon, Songhak
    Herbig, Bettina
    Glunz, Stefan W.
    Goldschmidt, Jan Christoph
    Sextl, Gerhard
    Mandel, Karl
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (08) : 4372 - 4379
  • [43] Influence of crystallisation on the structural and optical properties of lead-free Cs2AgBiBr6 perovskite crystals
    Armer, Melina
    Hoecker, Julian
    Buechner, Carsten
    Haefele, Sophie
    Doerflinger, Patrick
    Sirtl, Maximilian T.
    Tvingstedt, Kristofer
    Bein, Thomas
    Dyakonov, Vladimir
    CRYSTENGCOMM, 2021, 23 (39) : 6848 - 6854
  • [44] Elastic properties and thermal expansion of lead-free halide double perovskite Cs2AgBiBr6
    Dong, Liyuan
    Sun, Shijing
    Deng, Zeyu
    Li, Wei
    Wei, Fengxia
    Qi, Yajun
    Li, Yanchun
    Li, Xiaodong
    Lu, Peixiang
    Ramamurty, U.
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 141 : 49 - 58
  • [45] Study of a Lead-Free Perovskite Solar Cell Using CZTS as HTL to Achieve a 20% PCE by SCAPS-1D Simulation
    Pinon Reyes, Ana C.
    Ambrosio Lazaro, Roberto C.
    Monfil Leyva, Karim
    Luna Lopez, Jose A.
    Flores Mendez, Javier
    Heredia Jimenez, Aurelio H.
    Munoz Zurita, Ana L.
    Severiano Carrillo, Francisco
    Ojeda Duran, Esteban
    MICROMACHINES, 2021, 12 (12)
  • [46] The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film
    Wu, Cuncun
    Zhang, Qiaohui
    Liu, Yang
    Luo, Wei
    Guo, Xuan
    Huang, Ziru
    Ting, Hungkit
    Sun, Weihai
    Zhong, Xinrui
    Wei, Shiyuan
    Wang, Shufeng
    Chen, Zhijian
    Xiao, Lixin
    ADVANCED SCIENCE, 2018, 5 (03):
  • [47] Designing and optimizing the lead-free double perovskite Cs2AgBiI6/ Cs2AgBiBr6 bilayer perovskite solar cell
    Chen, Huan
    Li, Chaoen
    Zhou, Wenquan
    Wen, Jili
    Ma, Mei
    Chen, Yuelin
    Huang, Kai
    Ling, Yang
    Wu, Jiang
    Zhao, Yang
    Zeng, Xin
    Wu, Yuxiang
    SOLAR ENERGY, 2024, 284
  • [48] Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation
    Pindolia, Grishma
    Shinde, Satyam M.
    Jha, Prafulla K.
    SOLAR ENERGY, 2022, 236 : 802 - 821
  • [49] Optimizing the Efficiency of Lead-Free Cs2TiI6-Based Double Halide Perovskite Solar Cells Using SCAPS-1D
    Rehman, Ubaid ur
    Almousa, Nouf
    ul Sahar, Kashaf
    Ashfaq, Arslan
    Mahmood, Khalid
    Shokralla, Elsammani Ali
    Al-Buriahi, Mohammed S. S.
    Alrowaili, Ziyad A. A.
    Capangpangan, Rey Y. Y.
    Alguno, Arnold C. C.
    ENERGY TECHNOLOGY, 2023, 11 (09)
  • [50] X-Ray Detector Based on All-Inorganic Lead-Free Cs2AgBiBr6 Perovskite Single Crystal
    Zhang, Hainan
    Gao, Ziyan
    Liang, Renrong
    Zheng, Xinran
    Geng, Xiangshun
    Zhao, Yunfei
    Xie, Dan
    Hong, Jiawang
    Tian, He
    Yang, Yi
    Wang, Xueyun
    Ren, Tian-Ling
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (05) : 2224 - 2229