Vector fields which are biharmonic maps

被引:0
|
作者
Amina Alem
Bouazza Kacimi
Mustafa Özkan
机构
[1] University of Mascara,Department of Mathematics, Faculty of Exact Sciences
[2] Gazi University,Department of Mathematics, Faculty of Sciences
来源
Journal of Geometry | 2022年 / 113卷
关键词
Tangent bundle; Sasaki metric; Biharmonic maps; Primary 58E20; Secondary 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an explicit expression of the bitension field of a vector field considered as a map from a Riemannian manifold (M, g) to its tangent bundle TM equipped with the Sasaki metric gS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{S}$$\end{document} is provided. As a consequence, we show characterization theorem for a vector field to be biharmonic map. We prove non-existence results for left-invariant vector fields which are biharmonic without being harmonic maps and non-harmonic biharmonic maps respectively on unimodular Lie groups of dimension three.
引用
收藏
相关论文
共 50 条