In this paper, an explicit expression of the bitension field of a vector field considered as a map from a Riemannian manifold (M, g) to its tangent bundle TM equipped with the Sasaki metric gS\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g_{S}$$\end{document} is provided. As a consequence, we show characterization theorem for a vector field to be biharmonic map. We prove non-existence results for left-invariant vector fields which are biharmonic without being harmonic maps and non-harmonic biharmonic maps respectively on unimodular Lie groups of dimension three.
机构:
Univ Saida, Lab Geometry Anal Control & Applicat, BP138, En Nasr 20000, Saida, AlgeriaUniv Saida, Lab Geometry Anal Control & Applicat, BP138, En Nasr 20000, Saida, Algeria
Ouakkas, Seddik
Djebbouri, Djelloul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Saida, Lab Geometry Anal Control & Applicat, BP138, En Nasr 20000, Saida, AlgeriaUniv Saida, Lab Geometry Anal Control & Applicat, BP138, En Nasr 20000, Saida, Algeria