Vector fields which are biharmonic maps

被引:0
|
作者
Amina Alem
Bouazza Kacimi
Mustafa Özkan
机构
[1] University of Mascara,Department of Mathematics, Faculty of Exact Sciences
[2] Gazi University,Department of Mathematics, Faculty of Sciences
来源
Journal of Geometry | 2022年 / 113卷
关键词
Tangent bundle; Sasaki metric; Biharmonic maps; Primary 58E20; Secondary 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an explicit expression of the bitension field of a vector field considered as a map from a Riemannian manifold (M, g) to its tangent bundle TM equipped with the Sasaki metric gS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{S}$$\end{document} is provided. As a consequence, we show characterization theorem for a vector field to be biharmonic map. We prove non-existence results for left-invariant vector fields which are biharmonic without being harmonic maps and non-harmonic biharmonic maps respectively on unimodular Lie groups of dimension three.
引用
收藏
相关论文
共 50 条
  • [41] Biharmonic maps in two dimensions
    Ye-Lin Ou
    Sheng Lu
    Annali di Matematica Pura ed Applicata, 2013, 192 : 127 - 144
  • [42] Remarks on the nonexistence of biharmonic maps
    Yong Luo
    Archiv der Mathematik, 2016, 107 : 191 - 200
  • [43] Equivariant vector fields and self-maps of spheres
    Costenoble, SR
    Waner, S
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 187 (1-3) : 87 - 97
  • [44] Interpolating vector fields for near identity maps and averaging
    Gelfreich, V.
    Vieiro, A.
    NONLINEARITY, 2018, 31 (09) : 4263 - 4289
  • [45] PC SOFTWARE MAPS ELECTROMAGNETIC VECTOR-FIELDS
    KAJFEZ, D
    MAHADEVAN, K
    GERALD, JA
    MICROWAVE JOURNAL, 1989, 32 (05) : 267 - &
  • [46] Bubbling phenomena of biharmonic maps
    Nakauchi, Nobumitsu
    Urakawa, Hajime
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 355 - 375
  • [47] The index of biharmonic maps in spheres
    Loubeau, E
    Oniciuc, C
    COMPOSITIO MATHEMATICA, 2005, 141 (03) : 729 - 745
  • [48] Biharmonic maps in two dimensions
    Ou, Ye-Lin
    Lu, Sheng
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2013, 192 (01) : 127 - 144
  • [49] A regularity theory of biharmonic maps
    Chang, SYA
    Wang, LH
    Yang, PC
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1999, 52 (09) : 1113 - 1137
  • [50] On Minimizing extrinsic biharmonic maps
    Fardoun, Ali
    Saliba, Lara
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (04)