Vector fields which are biharmonic maps

被引:0
|
作者
Amina Alem
Bouazza Kacimi
Mustafa Özkan
机构
[1] University of Mascara,Department of Mathematics, Faculty of Exact Sciences
[2] Gazi University,Department of Mathematics, Faculty of Sciences
来源
Journal of Geometry | 2022年 / 113卷
关键词
Tangent bundle; Sasaki metric; Biharmonic maps; Primary 58E20; Secondary 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, an explicit expression of the bitension field of a vector field considered as a map from a Riemannian manifold (M, g) to its tangent bundle TM equipped with the Sasaki metric gS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{S}$$\end{document} is provided. As a consequence, we show characterization theorem for a vector field to be biharmonic map. We prove non-existence results for left-invariant vector fields which are biharmonic without being harmonic maps and non-harmonic biharmonic maps respectively on unimodular Lie groups of dimension three.
引用
收藏
相关论文
共 50 条
  • [31] WEAK COMPACTNESS OF BIHARMONIC MAPS
    Zheng, Shenzhou
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [32] HARMONIC AND BIHARMONIC MAPS AT IASI
    Balmus, A.
    Fetcu, D.
    Oniciuc, C.
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2010, 56 (01): : 81 - 96
  • [33] Energy quantization for biharmonic maps
    Laurain, Paul
    Riviere, Tristan
    ADVANCES IN CALCULUS OF VARIATIONS, 2013, 6 (02) : 191 - 216
  • [34] PERSPECTIVES ON BIHARMONIC MAPS AND SUBMANIFOLDS
    Balmus, A.
    DIFFERENTIAL GEOMETRY, 2009, : 257 - 265
  • [35] BIHARMONIC WAVE MAPS INTO SPHERES
    Herr, Sebastian
    Lamm, Tobias
    Schnaubelt, Roland
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 787 - 796
  • [36] Harmonic Maps and Torse-Forming Vector Fields
    Cherif, Ahmed Mohammed
    Djaa, Mustapha
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (01): : 87 - 93
  • [37] Remarks on the nonexistence of biharmonic maps
    Luo, Yong
    ARCHIV DER MATHEMATIK, 2016, 107 (02) : 191 - 200
  • [38] Neck analysis for biharmonic maps
    Lei Liu
    Hao Yin
    Mathematische Zeitschrift, 2016, 283 : 807 - 834
  • [39] Remarks on biharmonic maps into spheres
    Wang, CY
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 21 (03) : 221 - 242
  • [40] Some Results of Biharmonic Maps
    FENG Shu-xiang
    PAN Hong
    数学季刊(英文版), 2016, 31 (01) : 19 - 26