Commutators of flow maps of nonsmooth vector fields

被引:41
|
作者
Rampazzo, Franco
Sussmann, Hector J.
机构
[1] Univ Padua, Dipartimento Matemat Pura & Appl, I-35131 Padua, Italy
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Lie bracket; Lipschitz vector field; commutativity; asymptotic formula; simultaneous flow-box; higher order bracket;
D O I
10.1016/j.jde.2006.04.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Relying on the notion of set-valued Lie bracket introduced in an earlier paper, we extend some classical results valid for smooth vector fields to the case when the vector fields are just Lipschitz. In particular, we prove that the flows of two Lipschitz vector fields commute for small times if and only if their Lie bracket vanishes everywhere (i.e., equivalently, if their classical Lie bracket vanishes almost everywhere). We also extend the asymptotic formula that gives an estimate of the lack of commutativity of two vector fields in terms of their Lie bracket, and prove a simultaneous flow box theorem for commuting families of Lipschitz vector fields. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 175
页数:42
相关论文
共 50 条
  • [1] VECTOR FIELDS AND CURRENT COMMUTATORS
    BOULWARE, DG
    BROWN, LS
    PHYSICAL REVIEW, 1967, 156 (05): : 1724 - &
  • [2] Chaotic Vector Fields and Commutators
    Steeb, Willi-Hans
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (09): : 619 - 620
  • [3] VECTOR FIELDS, VARIATIONAL EQUATIONS AND COMMUTATORS
    Steeb, Willi-Hans
    Hardy, Yorick
    Tanski, Igor
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (08):
  • [4] N-commutators of vector fields
    Dzhumadil'daev, AS
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 502 (2-3): : 630 - 632
  • [5] VECTOR FIELDS AND CURRENT COMMUTATORS .2.
    BOULWARE, DG
    PHYSICAL REVIEW, 1968, 172 (05): : 1625 - &
  • [6] NONSMOOTH HORMANDER VECTOR FIELDS AND THEIR CONTROL BALLS
    Montanari, Annamaria
    Morbidelli, Daniele
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2339 - 2375
  • [7] On the Lifting and Approximation Theorem for Nonsmooth Vector Fields
    Bramanti, Marco
    Brandolini, Luca
    Pedroni, Marco
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (06) : 2093 - 2138
  • [8] Iterated Lie brackets for nonsmooth vector fields
    Ermal Feleqi
    Franco Rampazzo
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [9] Iterated Lie brackets for nonsmooth vector fields
    Feleqi, Ermal
    Rampazzo, Franco
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (06):
  • [10] Balls defined by nonsmooth vector fields and the Poincare inequality
    Montanari, A
    Morbidelli, D
    ANNALES DE L INSTITUT FOURIER, 2004, 54 (02) : 431 - +