Sobolev Orthogonal Polynomials on the Sierpinski Gasket

被引:0
|
作者
Qingxuan Jiang
Tian Lan
Kasso A. Okoudjou
Robert S. Strichartz
Shashank Sule
Sreeram Venkat
Xiaoduo Wang
机构
[1] Cornell University,Department of Mathematics
[2] ETH Zurich,Department of Mathematics
[3] Tufts University,Department of Mathematics
[4] University of Maryland,Department of Mathematics
[5] North Carolina State University,Department of Mathematics
[6] University of Illinois Urbana-Champaign,Department of Mathematics
关键词
Orthogonal polynomials; Sierpinski Gasket; Sobolev orthogonal polynomials; Primary 42C05; 28A80; Secondary 33F05; 33A99;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket (SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SG$$\end{document}), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SG$$\end{document} using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}, L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}, and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.
引用
收藏
相关论文
共 50 条
  • [1] Sobolev Orthogonal Polynomials on the Sierpinski Gasket
    Jiang, Qingxuan
    Lan, Tian
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Sule, Shashank
    Venkat, Sreeram
    Wang, Xiaoduo
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (03)
  • [2] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340
  • [3] Orthogonal Polynomials on the Sierpinski Gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Tuley, Elizabeth K.
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 311 - 340
  • [4] A TRACE THEOREM FOR SOBOLEV SPACES ON THE SIERPINSKI GASKET
    Cao, Shiping
    Li, Shuangping
    Strichartz, Robert S.
    Talwai, Prem
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3901 - 3916
  • [5] Orthogonal exponentials on the generalized plane Sierpinski gasket
    Li, Jian-Lin
    JOURNAL OF APPROXIMATION THEORY, 2008, 153 (02) : 161 - 169
  • [6] On Sobolev orthogonal polynomials
    Marcellan, Francisco
    Xu, Yuan
    EXPOSITIONES MATHEMATICAE, 2015, 33 (03) : 308 - 352
  • [7] THE CARDINALITY OF ORTHOGONAL EXPONENTIAL FUNCTIONS ON THE SPATIAL SIERPINSKI GASKET
    Zheng, Jia
    Liu, Jing-Cheng
    Chen, Ming-Liang
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [8] The exact number of orthogonal exponentials on the spatial Sierpinski gasket
    Wang, Qi
    FORUM MATHEMATICUM, 2021, 33 (05) : 1125 - 1136
  • [9] Orthogonal Polynomials Associated with Related Measures and Sobolev Orthogonal Polynomials
    A.C. Berti
    C.F. Bracciali
    A. Sri Ranga
    Numerical Algorithms, 2003, 34 : 203 - 216
  • [10] Orthogonal polynomials associated with related measures and Sobolev orthogonal polynomials
    Berti, AC
    Bracciali, CF
    Ranga, AS
    NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 203 - 216