Orthogonal exponentials on the generalized plane Sierpinski gasket

被引:33
|
作者
Li, Jian-Lin [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
关键词
iterated function system; self-affine measure; orthogonal exponentials; plane Sierpinski gasket;
D O I
10.1016/j.jat.2008.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The self-affine measure mu M-p.D corresponding to [GRAPHICS] supported on the the generalized plane Sierpinski gasket T(M-p, D). In the present paper we show that there exist at most 3.mutually orthogonal exponential functions in L-2(mu M-p,M- D), and the number 3 is the best. This generalizes several known results on the non-spectral self-affine measure problem. (C) 2008 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
  • [1] Orthogonal exponentials on the generalized three-dimensional Sierpinski gasket
    Yuan, Yan-Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 349 (02) : 395 - 402
  • [2] The exact number of orthogonal exponentials on the spatial Sierpinski gasket
    Wang, Qi
    FORUM MATHEMATICUM, 2021, 33 (05) : 1125 - 1136
  • [3] There are eight-element orthogonal exponentials on the spatial Sierpinski gasket
    Wang, Qi
    Li, Jian-Lin
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (01) : 211 - 226
  • [4] The maximal cardinality of μM,D-orthogonal exponentials on the spatial Sierpinski gasket
    Wang, Qi
    Li, Jian-Lin
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (01): : 203 - 224
  • [5] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340
  • [6] Orthogonal Polynomials on the Sierpinski Gasket
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Tuley, Elizabeth K.
    CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) : 311 - 340
  • [7] Sobolev Orthogonal Polynomials on the Sierpinski Gasket
    Jiang, Qingxuan
    Lan, Tian
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Sule, Shashank
    Venkat, Sreeram
    Wang, Xiaoduo
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (03)
  • [8] Sobolev Orthogonal Polynomials on the Sierpinski Gasket
    Qingxuan Jiang
    Tian Lan
    Kasso A. Okoudjou
    Robert S. Strichartz
    Shashank Sule
    Sreeram Venkat
    Xiaoduo Wang
    Journal of Fourier Analysis and Applications, 2021, 27
  • [9] Calculus on the Sierpinski gasket I: polynomials, exponentials and power series
    Needleman, J
    Strichartz, RS
    Teplyaev, A
    Yung, PL
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (02) : 290 - 340
  • [10] THE CARDINALITY OF ORTHOGONAL EXPONENTIAL FUNCTIONS ON THE SPATIAL SIERPINSKI GASKET
    Zheng, Jia
    Liu, Jing-Cheng
    Chen, Ming-Liang
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)