Orthogonal exponentials on the generalized plane Sierpinski gasket

被引:33
|
作者
Li, Jian-Lin [1 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
关键词
iterated function system; self-affine measure; orthogonal exponentials; plane Sierpinski gasket;
D O I
10.1016/j.jat.2008.01.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The self-affine measure mu M-p.D corresponding to [GRAPHICS] supported on the the generalized plane Sierpinski gasket T(M-p, D). In the present paper we show that there exist at most 3.mutually orthogonal exponential functions in L-2(mu M-p,M- D), and the number 3 is the best. This generalizes several known results on the non-spectral self-affine measure problem. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
  • [41] Spectrality of certain self-affine measures on the generalized spatial Sierpinski gasket
    Wang, Qi
    Li, Jian-Lin
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (07) : 895 - 909
  • [42] Energy and Laplacian on the Sierpinski gasket
    Teplyaev, A
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 131 - 154
  • [43] Hamiltonian walks on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (02)
  • [44] Hausdorff measure of Sierpinski gasket
    Zhou, ZL
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (10): : 1016 - 1021
  • [45] Spanning forests on the Sierpinski gasket
    Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
    不详
    Discrete Mathematics and Theoretical Computer Science, 2008, 10 (02): : 55 - 76
  • [46] Fractal functions on the Sierpinski Gasket
    Ri, SongIl
    CHAOS SOLITONS & FRACTALS, 2020, 138
  • [47] THE AVERAGE DISTANCE ON THE SIERPINSKI GASKET
    HINZ, AM
    SCHIEF, A
    PROBABILITY THEORY AND RELATED FIELDS, 1990, 87 (01) : 129 - 138
  • [48] AVERAGE GEODESIC DISTANCE OF SIERPINSKI GASKET AND SIERPINSKI NETWORKS
    Wang, Songjing
    Yu, Zhouyu
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)
  • [49] Nonlinear problems on the Sierpinski gasket
    Bisci, Giovanni Molica
    Repovs, Dusan
    Servadei, Raffaella
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (02) : 883 - 895
  • [50] Dimer Coverings on the Sierpinski Gasket
    Shu-Chiuan Chang
    Lung-Chi Chen
    Journal of Statistical Physics, 2008, 131 : 631 - 650