Hamiltonian walks on the Sierpinski gasket

被引:7
|
作者
Chang, Shu-Chiuan [1 ,2 ]
Chen, Lung-Chi [3 ,4 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
[2] Natl Taiwan Univ, Div Phys, Natl Ctr Theoret Sci, Taipei 10617, Taiwan
[3] Fu Jen Catholic Univ, Dept Math, Taipei 24205, Taiwan
[4] Taida Inst Math Sci, Taipei 10617, Taiwan
关键词
SELF-AVOIDING WALK; PATHS; DIMENSIONS; CIRCUITS; POLYMERS;
D O I
10.1063/1.3545358
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the exact number of Hamiltonian walks H(n) on the two-dimensional Sierpinski gasket SG(n) at stage n, whose asymptotic behavior is given by root 3(2 root 3)(3n-1)/3 x (5(2)x7(2)x17(2)x/2(12)x3(5)x13)(16)(n). We also obtain the number of Hamiltonian walks with one end at a specific outmost vertex of SG(n), with asymptotic behavior root 3(2 root 3)(3n-1)/3 x (7x17/2(4)x3(3))4(n). The distribution of Hamiltonian walks on SG(n) with one end at a specific outmost vertex and the other at an arbitrary vertex of SG(n) is investigated. We rigorously prove that the exponent for the mean l displacement between the two end vertices of such Hamiltonian walks on SG(n) is l ln 2/ln 3 for l > 0. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3545358]
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Hui-Hui Xie
    Guo-Mo Zeng
    [J]. Quantum Information Processing, 2021, 20
  • [2] Quantum walks on Sierpinski gasket and Sierpinski tetrahedron
    Xie, Hui-Hui
    Zeng, Guo-Mo
    [J]. QUANTUM INFORMATION PROCESSING, 2021, 20 (07)
  • [3] RANDOM-WALKS ON THE SIERPINSKI GASKET
    FRIEDBERG, R
    MARTIN, O
    [J]. JOURNAL DE PHYSIQUE, 1986, 47 (10): : 1663 - 1669
  • [4] Evaluation of connectivity constant of Hamiltonian walk on Sierpinski gasket
    Jafarizadeh, MA
    SeyedYaghoobi, SKA
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 1996, 20 (04): : 377 - 382
  • [6] SELF-INTERACTING SELF-AVOIDING WALKS ON THE SIERPINSKI GASKET
    KLEIN, DJ
    SEITZ, WA
    [J]. JOURNAL DE PHYSIQUE LETTRES, 1984, 45 (06): : L241 - L247
  • [7] Hamiltonian walks on Sierpinski and n-simplex fractals
    Stajic, J
    Elezovic-Hadzic, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (25): : 5677 - 5695
  • [8] TOPOLOGICAL INDICES OF SIERPINSKI GASKET AND SIERPINSKI GASKET RHOMBUS GRAPHS
    Padmapriya, P.
    Mathad, Veena
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 136 - 148
  • [9] A Multi-parameter Family of Self-avoiding Walks on the Sierpinski Gasket
    Otsuka, Takafumi
    [J]. TOKYO JOURNAL OF MATHEMATICS, 2021, 44 (01) : 251 - 283
  • [10] A noncommutative Sierpinski gasket
    Cipriani, Fabio E. G.
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (05)