On Sobolev orthogonal polynomials

被引:96
|
作者
Marcellan, Francisco [1 ,2 ]
Xu, Yuan [3 ]
机构
[1] Univ Carlos III Madrid, Inst Ciencias Matemat ICMAT, Leganes 28911, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
Orthogonal polynomials; Sobolev orthogonal polynomials; Approximation by polynomials;
D O I
10.1016/j.exmath.2014.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sobolev orthogonal polynomials have been studied extensively in the past quarter-century. The research in this field has sprawled into several directions and generates a plethora of publications. This paper contains a survey of the main developments up to now. The goal is to identify main ideas and developments in the field, which hopefully will lend a structure to the mountainous publications and help future research. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:308 / 352
页数:45
相关论文
共 50 条
  • [1] Orthogonal Polynomials Associated with Related Measures and Sobolev Orthogonal Polynomials
    A.C. Berti
    C.F. Bracciali
    A. Sri Ranga
    Numerical Algorithms, 2003, 34 : 203 - 216
  • [2] Orthogonal polynomials associated with related measures and Sobolev orthogonal polynomials
    Berti, AC
    Bracciali, CF
    Ranga, AS
    NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 203 - 216
  • [3] On generating Sobolev orthogonal polynomials
    Van Buggenhout N.
    Numerische Mathematik, 2023, 155 (3-4) : 415 - 443
  • [4] Sobolev Orthogonal Polynomials on a Simplex
    Aktas, Rabia
    Xu, Yuan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (13) : 3087 - 3131
  • [5] General Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    Ronveaux, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) : 614 - 634
  • [6] ON SOBOLEV ORTHOGONAL POLYNOMIALS ON A TRIANGLE
    Marriaga, Misael E.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 679 - 691
  • [7] Sobolev Orthogonal Polynomials Generated by Meixner Polynomials
    Sharapudinov, I. I.
    Gadzhieva, Z. D.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (03): : 310 - 321
  • [8] Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh
    Sharapudinov I.I.
    Sharapudinov T.I.
    Russian Mathematics, 2017, 61 (8) : 59 - 70
  • [9] Strong asymptotics for Sobolev orthogonal polynomials
    Andrei Martínez Finkelshtein
    Héctor Pijeira Cabrera
    Journal d’Analyse Mathématique, 1999, 78 : 143 - 156
  • [10] Bivariate Koornwinder–Sobolev Orthogonal Polynomials
    Misael E. Marriaga
    Teresa E. Pérez
    Miguel A. Piñar
    Mediterranean Journal of Mathematics, 2021, 18