On Sobolev orthogonal polynomials

被引:96
|
作者
Marcellan, Francisco [1 ,2 ]
Xu, Yuan [3 ]
机构
[1] Univ Carlos III Madrid, Inst Ciencias Matemat ICMAT, Leganes 28911, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[3] Univ Oregon, Dept Math, Eugene, OR 97403 USA
基金
美国国家科学基金会;
关键词
Orthogonal polynomials; Sobolev orthogonal polynomials; Approximation by polynomials;
D O I
10.1016/j.exmath.2014.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sobolev orthogonal polynomials have been studied extensively in the past quarter-century. The research in this field has sprawled into several directions and generates a plethora of publications. This paper contains a survey of the main developments up to now. The goal is to identify main ideas and developments in the field, which hopefully will lend a structure to the mountainous publications and help future research. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:308 / 352
页数:45
相关论文
共 50 条
  • [31] Zeros of Sobolev orthogonal polynomials of Hermite type
    de Bruin, MG
    Groenevelt, WGM
    Meijer, HG
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 132 (01) : 135 - 166
  • [32] Zeros of Sobolev orthogonal polynomials on the unit circle
    Castillo, K.
    Garza, L. E.
    Marcellan, F.
    NUMERICAL ALGORITHMS, 2012, 60 (04) : 669 - 681
  • [33] Bivariate Koornwinder-Sobolev Orthogonal Polynomials
    Marriaga, Misael E.
    Perez, Teresa E.
    Pinar, Miguel A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [34] A family of Sobolev orthogonal polynomials on the unit ball
    Xu, Y
    JOURNAL OF APPROXIMATION THEORY, 2006, 138 (02) : 232 - 241
  • [35] Asymptotics for Sobolev Orthogonal Polynomials for Exponential Weights
    J. S. Geronimo
    D. S. Lubinsky
    F. Marcellan
    Constructive Approximation , 2005, 22 : 309 - 346
  • [36] Classical Sobolev Orthogonal Polynomials: Eigenvalue Problem
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    RESULTS IN MATHEMATICS, 2019, 74 (04)
  • [37] A note on the Geronimus transformation and Sobolev orthogonal polynomials
    Derevyagin, Maxim
    Marcellan, Francisco
    NUMERICAL ALGORITHMS, 2014, 67 (02) : 271 - 287
  • [38] Differential properties for a class of Sobolev orthogonal polynomials
    Berriochoa, E
    Cachafeiro, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 146 (02) : 361 - 372
  • [39] Sobolev Orthogonal Polynomials: Asymptotics and Symbolic Computation
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (03) : 535 - 563
  • [40] Sobolev orthogonal polynomials in computing of Hankel determinants
    Rajkovic, Predrag M.
    Barry, Paul
    Petkovic, Marko D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (10) : 2417 - 2428