Asymptotics for Sobolev Orthogonal Polynomials for Exponential Weights

被引:0
|
作者
J. S. Geronimo
D. S. Lubinsky
F. Marcellan
机构
[1] School of Mathematics,
[2] Georgia Institute of Technology,undefined
[3] Atlanta,undefined
[4] GA 30332 ,undefined
来源
关键词
Orthogonal polynomials; Sobolev norms; Asymptotics;
D O I
暂无
中图分类号
学科分类号
摘要
Let $\lambda >0,\alpha >1$, and let $W( x) =\exp ( -\vert x\vert ^{\alpha }) $, $x\in \mbox{\smallbf R}$. Let $\psi \in L_{\infty }(\mbox{\smallbf R}) $ be positive on a set of positive measure. For $n\geq 1$, one may form Sobolev orthonormal polynomials $( q_{n}) $, associated with the Sobolev inner product \[ ( f,g) =\int_{\mbox{\scriptsize\bf R}}fg( \psi W) ^{2}+\lambda \int_{\mbox{\scriptsize\bf R}}f^{\prime }g^{\prime }W^{2}. \] We establish strong asymptotics for the $( q_{n}) $ in terms of the ordinary orthonormal polynomials $( p_{n}) $ for the weight $W^{2}$, on and off the real line. More generally, we establish a close asymptotic relationship between $( p_{n}) $ and $( q_{n}) $ for exponential weights $W=\exp ( -Q) $ on a real interval $I$, under mild conditions on $Q$. The method is new and will apply to many situations beyond that treated in this paper.
引用
收藏
页码:309 / 346
页数:37
相关论文
共 50 条
  • [1] Asymptotics for Sobolev orthogonal polynomials for exponential weights
    Geronimo, JS
    Lubinsky, DS
    Marcellan, F
    [J]. CONSTRUCTIVE APPROXIMATION, 2005, 22 (03) : 309 - 346
  • [2] Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights
    Diaz Mendoza, C.
    Orive, R.
    Pijeira Cabrera, H.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) : 691 - 698
  • [3] Strong asymptotics of orthogonal polynomials with respect to exponential weights
    Deift, P
    Kriecherbauer, T
    McLaughlin, KTR
    Venakides, S
    Zhou, X
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1999, 52 (12) : 1491 - 1552
  • [4] Asymptotics for polynomials orthogonal with respect to varying exponential weights
    Deift, P
    Kriecherbauer, T
    McLaughlin, KTR
    Venakides, S
    Zhou, X
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (16) : 759 - 782
  • [5] Some asymptotics for Sobolev orthogonal polynomials involving Gegenbauer weights
    Bracciali, Cleonice F.
    Castano-Garcia, Laura
    Moreno-Balcazar, Juan J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (04) : 904 - 915
  • [7] Strong asymptotics for Sobolev orthogonal polynomials
    Andrei Martínez Finkelshtein
    Héctor Pijeira Cabrera
    [J]. Journal d’Analyse Mathématique, 1999, 78 : 143 - 156
  • [8] Sobolev orthogonal polynomials:: Balance and asymptotics
    Alfaro, Manuel
    Jose Moreno-Balcazar, Juan
    Pena, Ana
    Luisa Rezola, M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (01) : 547 - 560
  • [9] Strong asymptotics for Sobolev orthogonal polynomials
    Finkelshtein, AM
    Cabrera, HP
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 143 - 156
  • [10] Asymptotics of Laurent Polynomials of Odd Degree Orthogonal with Respect to Varying Exponential Weights
    K.T.R. McLaughlin
    A.H. Vartanian
    X. Zhou
    [J]. Constructive Approximation, 2008, 27 : 149 - 202