Asymptotics of Laurent Polynomials of Odd Degree Orthogonal with Respect to Varying Exponential Weights

被引:0
|
作者
K.T.R. McLaughlin
A.H. Vartanian
X. Zhou
机构
[1] Department of Mathematics,
[2] The University of Arizona,undefined
[3] 617 N. Santa Rita Ave.,undefined
[4] P.O. Box 210089,undefined
[5] Department of Mathematics,undefined
[6] College of Charleston,undefined
[7] 66 George Street,undefined
[8] Department of Mathematics,undefined
[9] Duke University,undefined
[10] Box 90320,undefined
来源
关键词
Riemann Surface; Orthogonal Polynomial; Equilibrium Measure; Hilbert Problem; Laurent Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda^{{\Bbb R}}$\end{document} denote the linear space over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb R}$\end{document} spanned by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z^{k}, k \in {\Bbb Z}$\end{document}. Define the (real) inner product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle \cdot,\cdot \rangle_{{\cal L}} : \Lambda^{{\Bbb R}} \times \Lambda^{{\Bbb R}} \to {\Bbb R}, (f,g) \mapsto \int_{{\Bbb R}}f(s)g(s) \exp (-{\cal N} V(s)) \, {\rm d} s, {\cal N} \in {\Bbb N}$\end{document}, where V satisfies: (i) V is real analytic on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb R} \backslash \{0\}$\end{document}; (ii)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lim_{\vert x \vert \to \infty}(V(x)/{\rm ln} (x^{2} + 1)) = +\infty$\end{document}; and (iii)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lim_{\vert x \vert \to 0}(V(x)/{\rm ln} (x^{-2} + 1)) = +\infty$\end{document}. Orthogonalisation of the (ordered) base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lbrace 1,z^{-1},z,z^{-2},z^{2},\ldots,z^{-k},z^{k},\ldots \rbrace$\end{document} with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle \cdot,\cdot \rangle_{{\cal L}}$\end{document} yields the even degree and odd degree orthonormal Laurent polynomials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lbrace \phi_{m}(z) \rbrace_{m=0}^{\infty}: \phi_{2n}(z) = \xi^{(2n)}_{-n}z^{-n} + \cdots + \xi^{(2n)}_{n}z^{n}, \xi^{(2n)}_{n} > 0$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi_{2n+1}(z) = \xi^{(2n+1)}_{-n-1}z^{-n-1} + \cdots + \xi^{(2n+1)}_{n}z^{n}, \xi^{(2n+1)}_{-n-1} > 0$\end{document}. Define the even degree and odd degree monic orthogonal Laurent polynomials: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi_{2n}(z) := (\xi^{(2n)}_{n})^{-1} \phi_{2n}(z)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi_{2n+1}(z) := (\xi^{(2n+1)}_{-n-1})^{-1} \phi_{2n+1}(z)$\end{document}. Asymptotics in the double-scaling limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal N},n \to \infty$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal N}/n = 1 + o(1)$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi_{2n+1}(z)$\end{document} (in the entire complex plane), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\xi^{(2n+1)}_{-n-1}$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi_{2n+1}(z)$\end{document} (in the entire complex plane) are obtained by formulating the odd degree monic orthogonal Laurent polynomial problem as a matrix Riemann-Hilbert problem on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb R}$\end{document}, and then extracting the large-n behaviour by applying the non-linear steepest-descent method introduced in [1] and further developed in [2],[3].
引用
收藏
页码:149 / 202
页数:53
相关论文
共 50 条