On generating Sobolev orthogonal polynomials

被引:0
|
作者
Van Buggenhout N. [1 ]
机构
[1] Department of Numerical Mathematics, Charles University, Sokolovská 83, Prague 8
关键词
65F18; 15B99; 42C05;
D O I
10.1007/s00211-023-01379-3
中图分类号
学科分类号
摘要
Sobolev orthogonal polynomials are polynomials orthogonal with respect to a Sobolev inner product, an inner product in which derivatives of the polynomials appear. They satisfy a long recurrence relation that can be represented by a Hessenberg matrix. The problem of generating a finite sequence of Sobolev orthogonal polynomials can be reformulated as a matrix problem, that is, a Hessenberg inverse eigenvalue problem, where the Hessenberg matrix of recurrences is generated from certain known spectral information. Via the connection to Krylov subspaces we show that the required spectral information is the Jordan matrix containing the eigenvalues of the Hessenberg matrix and the normalized first entries of its eigenvectors. Using a suitable quadrature rule the Sobolev inner product is discretized and the resulting quadrature nodes form the Jordan matrix and associated quadrature weights are the first entries of the eigenvectors. We propose two new numerical procedures to compute Sobolev orthonormal polynomials based on solving the equivalent Hessenberg inverse eigenvalue problem. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:415 / 443
页数:28
相关论文
共 50 条
  • [1] A generating function for Laguerre-Sobolev orthogonal polynomials
    Meijer, HG
    Piñar, MA
    JOURNAL OF APPROXIMATION THEORY, 2003, 120 (01) : 111 - 123
  • [2] On Sobolev orthogonal polynomials
    Marcellan, Francisco
    Xu, Yuan
    EXPOSITIONES MATHEMATICAE, 2015, 33 (03) : 308 - 352
  • [3] Orthogonal Polynomials Associated with Related Measures and Sobolev Orthogonal Polynomials
    A.C. Berti
    C.F. Bracciali
    A. Sri Ranga
    Numerical Algorithms, 2003, 34 : 203 - 216
  • [4] Orthogonal polynomials associated with related measures and Sobolev orthogonal polynomials
    Berti, AC
    Bracciali, CF
    Ranga, AS
    NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 203 - 216
  • [5] Sobolev Orthogonal Polynomials on a Simplex
    Aktas, Rabia
    Xu, Yuan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (13) : 3087 - 3131
  • [6] General Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    Ronveaux, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (03) : 614 - 634
  • [7] ON SOBOLEV ORTHOGONAL POLYNOMIALS ON A TRIANGLE
    Marriaga, Misael E.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 679 - 691
  • [8] ON GENERATING ORTHOGONAL POLYNOMIALS
    GAUTSCHI, W
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1982, 3 (03): : 289 - 317
  • [9] Sobolev Orthogonal Polynomials Generated by Meixner Polynomials
    Sharapudinov, I. I.
    Gadzhieva, Z. D.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (03): : 310 - 321
  • [10] Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh
    Sharapudinov I.I.
    Sharapudinov T.I.
    Russian Mathematics, 2017, 61 (8) : 59 - 70