On generating Sobolev orthogonal polynomials

被引:0
|
作者
Van Buggenhout N. [1 ]
机构
[1] Department of Numerical Mathematics, Charles University, Sokolovská 83, Prague 8
关键词
65F18; 15B99; 42C05;
D O I
10.1007/s00211-023-01379-3
中图分类号
学科分类号
摘要
Sobolev orthogonal polynomials are polynomials orthogonal with respect to a Sobolev inner product, an inner product in which derivatives of the polynomials appear. They satisfy a long recurrence relation that can be represented by a Hessenberg matrix. The problem of generating a finite sequence of Sobolev orthogonal polynomials can be reformulated as a matrix problem, that is, a Hessenberg inverse eigenvalue problem, where the Hessenberg matrix of recurrences is generated from certain known spectral information. Via the connection to Krylov subspaces we show that the required spectral information is the Jordan matrix containing the eigenvalues of the Hessenberg matrix and the normalized first entries of its eigenvectors. Using a suitable quadrature rule the Sobolev inner product is discretized and the resulting quadrature nodes form the Jordan matrix and associated quadrature weights are the first entries of the eigenvectors. We propose two new numerical procedures to compute Sobolev orthonormal polynomials based on solving the equivalent Hessenberg inverse eigenvalue problem. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:415 / 443
页数:28
相关论文
共 50 条
  • [21] Strong asymptotics for Sobolev orthogonal polynomials
    Finkelshtein, AM
    Cabrera, HP
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 143 - 156
  • [22] On Freud–Sobolev type orthogonal polynomials
    Luis E. Garza
    Edmundo J. Huertas
    Francisco Marcellán
    Afrika Matematika, 2019, 30 : 505 - 528
  • [23] Sobolev orthogonal polynomials on product domains
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    Xu, Yuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 202 - 215
  • [24] ON RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
    EVANS, WD
    LITTLEJOHN, LL
    MARCELLAN, F
    MARKETT, C
    RONVEAUX, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (02) : 446 - 467
  • [25] Nondiagonal Hermite–Sobolev Orthogonal Polynomials
    María Álvarez de Morales
    Juan J. Moreno–Balcázar
    Teresa E. Pérez
    Miguel A. Piñar
    Acta Applicandae Mathematica, 2000, 61 : 257 - 266
  • [26] RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
    Sultanakhmedov, M. S.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (02): : 97 - 118
  • [27] On Recurrence Relations for Sobolev Orthogonal Polynomials
    Evans, W. D.
    Littlejohn, L. L.
    Marcellan, F.
    Markett, C.
    SIAM News, 1995, 26 (02):
  • [28] Laguerre-Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) : 245 - 265
  • [29] COMPUTING ORTHOGONAL POLYNOMIALS IN SOBOLEV SPACES
    GAUTSCHI, W
    ZHANG, MD
    NUMERISCHE MATHEMATIK, 1995, 71 (02) : 159 - 183
  • [30] Generating complex orthogonal polynomials
    Chen, Kui Fu
    Wang, Jian Li
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (01) : 59 - 64