Sobolev Orthogonal Polynomials on the Sierpinski Gasket

被引:0
|
作者
Qingxuan Jiang
Tian Lan
Kasso A. Okoudjou
Robert S. Strichartz
Shashank Sule
Sreeram Venkat
Xiaoduo Wang
机构
[1] Cornell University,Department of Mathematics
[2] ETH Zurich,Department of Mathematics
[3] Tufts University,Department of Mathematics
[4] University of Maryland,Department of Mathematics
[5] North Carolina State University,Department of Mathematics
[6] University of Illinois Urbana-Champaign,Department of Mathematics
关键词
Orthogonal polynomials; Sierpinski Gasket; Sobolev orthogonal polynomials; Primary 42C05; 28A80; Secondary 33F05; 33A99;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket (SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SG$$\end{document}), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SG$$\end{document} using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}, L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}, and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.
引用
收藏
相关论文
共 50 条
  • [31] On Freud–Sobolev type orthogonal polynomials
    Luis E. Garza
    Edmundo J. Huertas
    Francisco Marcellán
    Afrika Matematika, 2019, 30 : 505 - 528
  • [32] Sobolev orthogonal polynomials on product domains
    Fernandez, Lidia
    Marcellan, Francisco
    Perez, Teresa E.
    Pinar, Miguel A.
    Xu, Yuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 202 - 215
  • [33] ON RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
    EVANS, WD
    LITTLEJOHN, LL
    MARCELLAN, F
    MARKETT, C
    RONVEAUX, A
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (02) : 446 - 467
  • [34] Nondiagonal Hermite–Sobolev Orthogonal Polynomials
    María Álvarez de Morales
    Juan J. Moreno–Balcázar
    Teresa E. Pérez
    Miguel A. Piñar
    Acta Applicandae Mathematica, 2000, 61 : 257 - 266
  • [35] RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS
    Sultanakhmedov, M. S.
    PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2020, 9 (02): : 97 - 118
  • [36] On Recurrence Relations for Sobolev Orthogonal Polynomials
    Evans, W. D.
    Littlejohn, L. L.
    Marcellan, F.
    Markett, C.
    SIAM News, 1995, 26 (02):
  • [37] Laguerre-Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) : 245 - 265
  • [38] COMPUTING ORTHOGONAL POLYNOMIALS IN SOBOLEV SPACES
    GAUTSCHI, W
    ZHANG, MD
    NUMERISCHE MATHEMATIK, 1995, 71 (02) : 159 - 183
  • [39] Hajlasz-Sobolev type spaces and p-energy on the Sierpinski gasket
    Hu, JX
    Ji, Y
    Wen, ZY
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2005, 30 (01) : 99 - 111
  • [40] GENERALIZED WEIGHTED SOBOLEV SPACES AND APPLICATIONS TO SOBOLEV ORTHOGONAL POLYNOMIALS Ⅱ
    JoséM.Rodriguez
    ElenaRomeraandDomingoPestana
    VenancioAlvarez
    Analysis in Theory and Applications, 2002, (02) : 1 - 32