Sobolev Orthogonal Polynomials on the Sierpinski Gasket

被引:0
|
作者
Qingxuan Jiang
Tian Lan
Kasso A. Okoudjou
Robert S. Strichartz
Shashank Sule
Sreeram Venkat
Xiaoduo Wang
机构
[1] Cornell University,Department of Mathematics
[2] ETH Zurich,Department of Mathematics
[3] Tufts University,Department of Mathematics
[4] University of Maryland,Department of Mathematics
[5] North Carolina State University,Department of Mathematics
[6] University of Illinois Urbana-Champaign,Department of Mathematics
关键词
Orthogonal polynomials; Sierpinski Gasket; Sobolev orthogonal polynomials; Primary 42C05; 28A80; Secondary 33F05; 33A99;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket (SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SG$$\end{document}), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on SG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SG$$\end{document} using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}, L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}, and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.
引用
收藏
相关论文
共 50 条
  • [21] Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh
    Sharapudinov I.I.
    Sharapudinov T.I.
    Russian Mathematics, 2017, 61 (8) : 59 - 70
  • [22] Strong asymptotics for Sobolev orthogonal polynomials
    Andrei Martínez Finkelshtein
    Héctor Pijeira Cabrera
    Journal d’Analyse Mathématique, 1999, 78 : 143 - 156
  • [23] Bivariate Koornwinder–Sobolev Orthogonal Polynomials
    Misael E. Marriaga
    Teresa E. Pérez
    Miguel A. Piñar
    Mediterranean Journal of Mathematics, 2021, 18
  • [24] Sobolev orthogonal polynomials:: Balance and asymptotics
    Alfaro, Manuel
    Jose Moreno-Balcazar, Juan
    Pena, Ana
    Luisa Rezola, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (01) : 547 - 560
  • [25] Sobolev orthogonal polynomials in the complex plane
    Lagomasino, GL
    Cabrera, HP
    Izquierdo, IP
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) : 219 - 254
  • [26] ORTHOGONAL POLYNOMIALS AND APPROXIMATION IN SOBOLEV SPACES
    EVERITT, WN
    LITTLEJOHN, LL
    WILLIAMS, SC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 48 (1-2) : 69 - 90
  • [27] A study on Sobolev orthogonal polynomials on a triangle
    Karaman, Rabia Aktas
    Lekesiz, Esra Guldogan
    Aygar, Yelda
    NUMERICAL ALGORITHMS, 2023, 97 (2) : 915 - 944
  • [28] Asymptotic properties of Sobolev orthogonal polynomials
    Martinez-Finkelshtein, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) : 491 - 510
  • [29] ORTHOGONAL POLYNOMIALS IN WEIGHTED SOBOLEV SPACES
    EVERITT, WN
    LITTLEJOHN, LL
    WILLIAMS, SC
    ORTHOGONAL POLYNOMIALS AND THEIR APPLICATIONS /: PROCEEDINGS OF THE INTERNATIONAL CONGRESS, 1989, 117 : 53 - 72
  • [30] Strong asymptotics for Sobolev orthogonal polynomials
    Finkelshtein, AM
    Cabrera, HP
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 143 - 156