Integral Equation;
Integral Operator;
Posteriori Error;
Neumann Problem;
Open Surface;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The hypersingular integral equation of the first kind equivalently describes screen and Neumann problems on an open surface piece. The paper establishes a computable upper error bound for its Galerkin approximation and so motivates adaptive mesh refining algorithms. Numerical experiments for triangular elements on a screen provide empirical evidence of the superiority of adapted over uniform mesh-refining. The numerical realisation requires the evaluation of the hypersingular integral operator at a source point; this and other details on the algorithm are included.
机构:
Arts & Metiers ParisTech Ctr Lille, L2EP, F-59000 Lille, FranceArts & Metiers ParisTech Ctr Lille, L2EP, F-59000 Lille, France
Mac, D. H.
Tang, Z.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille Nord France, L2EP, F-59655 Villeneuve Dascq, FranceArts & Metiers ParisTech Ctr Lille, L2EP, F-59000 Lille, France
Tang, Z.
Clenet, S.
论文数: 0引用数: 0
h-index: 0
机构:
Arts & Metiers ParisTech Ctr Lille, L2EP, F-59000 Lille, FranceArts & Metiers ParisTech Ctr Lille, L2EP, F-59000 Lille, France
Clenet, S.
Creuse, E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille Nord France, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
INRIA, Lille Nord Europe EPI MEPHYSTO, F-59655 Villeneuve Dascq, FranceArts & Metiers ParisTech Ctr Lille, L2EP, F-59000 Lille, France