Residual-based a posteriori error estimate for hypersingular equation on surfaces - Dedicated to W. L. Wendland on the occasion of his 65th birthday

被引:36
|
作者
Carstensen, C
Maischak, M
Praetorius, D
Stephan, EP
机构
[1] Vienna Univ Technol, Inst Appl Math & Numer Anal, A-1040 Vienna, Austria
[2] Leibniz Univ Hannover, Inst Angew Math, D-30167 Hannover, Germany
关键词
Integral Equation; Integral Operator; Posteriori Error; Neumann Problem; Open Surface;
D O I
10.1007/s00211-003-0506-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The hypersingular integral equation of the first kind equivalently describes screen and Neumann problems on an open surface piece. The paper establishes a computable upper error bound for its Galerkin approximation and so motivates adaptive mesh refining algorithms. Numerical experiments for triangular elements on a screen provide empirical evidence of the superiority of adapted over uniform mesh-refining. The numerical realisation requires the evaluation of the hypersingular integral operator at a source point; this and other details on the algorithm are included.
引用
收藏
页码:397 / 425
页数:29
相关论文
共 19 条