Residual-based a posteriori error estimate for hypersingular equation on surfaces

被引:0
|
作者
Carsten Carstensen
M. Maischak
D Praetorius
E.P. Stephan
机构
[1] Vienna University of Technology,Institute for Applied Mathematics and Numerical Analysis
[2] Universität Hannover,Institut für Angewandte Mathematik
来源
Numerische Mathematik | 2004年 / 97卷
关键词
Integral Equation; Integral Operator; Posteriori Error; Neumann Problem; Open Surface;
D O I
暂无
中图分类号
学科分类号
摘要
The hypersingular integral equation of the first kind equivalently describes screen and Neumann problems on an open surface piece. The paper establishes a computable upper error bound for its Galerkin approximation and so motivates adaptive mesh refining algorithms. Numerical experiments for triangular elements on a screen provide empirical evidence of the superiority of adapted over uniform mesh-refining. The numerical realisation requires the evaluation of the hypersingular integral operator at a source point; this and other details on the algorithm are included.
引用
收藏
页码:397 / 425
页数:28
相关论文
共 50 条
  • [41] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Chen, Long
    Hu, Jun
    Huang, Xuehai
    Man, Hongying
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 973 - 992
  • [42] A residual-based a posteriori error estimator for the hp-finite element method for Maxwell's equations
    Buerg, M.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (08) : 922 - 940
  • [43] RESIDUAL-BASED A POSTERIORI ERROR ESTIMATION FOR ELLIPTIC INTERFACE PROBLEMS APPROXIMATED BY IMMERSED FINITE ELEMENT METHODS
    Chen, Yanping
    Lu, Jiao
    Wang, Yang
    Huang, Yunqing
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (04) : 997 - 1018
  • [44] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    [J]. Science China Mathematics, 2018, 61 : 973 - 992
  • [45] A residual-based a posteriori error estimator for a two-dimensional fluid-solid interaction problem
    Gatica, Gabriel N.
    Hsiao, George C.
    Meddahi, Salim
    [J]. NUMERISCHE MATHEMATIK, 2009, 114 (01) : 63 - 106
  • [46] Residual-based a posteriori error estimation for hp-adaptive finite element methods for the Stokes equations
    Ghesmati, Arezou
    Bangerth, Wolfgang
    Turcksin, Bruno
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (04) : 237 - 252
  • [47] A residual-based a posteriori error estimator for the plane linear elasticity problem with pure traction boundary conditions
    Dominguez, Carolina
    Gatica, Gabriel N.
    Marquez, Antonio
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 486 - 504
  • [48] Residual-Based a Posteriori Error Estimates for the Time-Dependent Ginzburg-Landau Equations of Superconductivity
    Duan, Huoyuan
    Zhang, Qiuyu
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (03)
  • [49] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Long Chen
    Jun Hu
    Xuehai Huang
    Hongying Man
    [J]. Science China Mathematics, 2018, 61 (06) : 973 - 992
  • [50] Residual-based a posteriori error analysis for the coupling of the Navier-Stokes and Darcy-Forchheimer equations
    Caucao, Sergio
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Sandoval, Felipe
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (02) : 659 - 687