Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element

被引:16
|
作者
Carstensen, C
机构
[1] Vienna Univ Technol, Inst Appl Math & Numer Anal, A-1040 Vienna, Austria
[2] Math Sci Res Inst, Berkeley, CA 94720 USA
关键词
Reissner-Mindlin; plate; a posteriori error estimates; adaptive algorithm; reliability; efficiency; mixed finite element method; nonconforming finite element method;
D O I
10.1137/S0036142900371477
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Reliable and efficient residual-based a posteriori error estimates are established for the nonconforming finite element method for the Reissner-Mindlin plate due to Arnold and Falk [SIAM J. Numer. Anal., 26 ( 1989), pp. 1276 1290]. The error is estimated by a computable error estimator from above and below up to multiplicative constants that depend neither on the mesh-size nor on the plate's thickness. The error is controlled in norms that are known to converge to zero in a quasi-optimal way.
引用
收藏
页码:2034 / 2044
页数:11
相关论文
共 50 条