Residual-based a posteriori error estimators for algebraic stabilizations

被引:0
|
作者
Jha, Abhinav [1 ]
机构
[1] Univ Stuttgart, Inst Appl Anal & Numer Simulat, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
关键词
Steady-state convection diffusion reaction equations; Algebraically stabilized finite element methods; A posteriori estimator; Adaptive grid refinement;
D O I
10.1016/j.aml.2024.109192
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we extend the analysis for the residual-based a posteriori error estimators in the energy norm defined for the algebraic flux correction (AFC) schemes (Jha, 2021) to the newly proposed algebraic stabilization schemes (John and Knobloch, 2022; Knobloch, 2023). Numerical simulations on adaptively refined grids are performed in two dimensions showing the higher efficiency of an algebraic stabilization with similar accuracy compared with an AFC scheme.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On a residual-based a posteriori error estimator for the total error
    Papez, Jan
    Strakos, Zdenek
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (03) : 1164 - 1184
  • [2] Some new residual-based a posteriori error estimators for the mortar finite element methods
    Feng Wang
    Xuejun Xu
    [J]. Numerische Mathematik, 2012, 120 : 543 - 571
  • [3] Some new residual-based a posteriori error estimators for the mortar finite element methods
    Wang, Feng
    Xu, Xuejun
    [J]. NUMERISCHE MATHEMATIK, 2012, 120 (03) : 543 - 571
  • [4] A note on the efficiency of residual-based a-posteriori error estimators for some mixed finite element methods
    Gatica, GN
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 17 : 218 - 233
  • [5] RANDOMIZED RESIDUAL-BASED ERROR ESTIMATORS FOR PARAMETRIZED EQUATIONS
    Smetana, Kathrin
    Zahm, Olivier
    Patera, Anthony T.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A900 - A926
  • [6] On residual-based a posteriori error estimation in hp-FEM
    J.M. Melenk
    B.I. Wohlmuth
    [J]. Advances in Computational Mathematics, 2001, 15 : 311 - 331
  • [7] Residual-based a posteriori error estimation for stochastic magnetostatic problems
    Mac, D. H.
    Tang, Z.
    Clenet, S.
    Creuse, E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 : 51 - 67
  • [8] On residual-based a posteriori error estimation in hp-FEM
    Melenk, JM
    Wohlmuth, BI
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 311 - 331
  • [9] REFINED FULLY EXPLICIT A POSTERIORI RESIDUAL-BASED ERROR CONTROL
    Carstensen, C.
    Merdon, C.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 1709 - 1728
  • [10] Residual-based a posteriori error estimate for hypersingular equation on surfaces
    Carsten Carstensen
    M. Maischak
    D Praetorius
    E.P. Stephan
    [J]. Numerische Mathematik, 2004, 97 : 397 - 425