A Proof of a Conjecture on the Distance Spectral Radius and Maximum Transmission of Graphs

被引:0
|
作者
Lele Liu
Haiying Shan
Changxiang He
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Tongji University,School of Mathematical Sciences
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Distance matrix; Distance spectral radius; Non-transmission-regular graph; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple connected graph, and D(G) be the distance matrix of G. Suppose that Dmax(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)$$\end{document} and λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(G)$$\end{document} are the maximum row sum and the spectral radius of D(G), respectively. In this paper, we give a lower bound for Dmax(G)-λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)-\lambda _1(G)$$\end{document}, and characterize the extremal graphs attaining the bound. As a corollary, we solve a conjecture posed by Liu, Shu and Xue.
引用
下载
收藏
相关论文
共 50 条
  • [31] On the distance Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    DISCRETE APPLIED MATHEMATICS, 2015, 186 : 207 - 213
  • [32] On the distance Laplacian spectral radius of bicyclic graphs
    Xu, Nannan
    Yu, Aimei
    Hao, Rong-Xia
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4654 - 4674
  • [33] Sharp bounds on distance spectral radius of graphs
    Lin, Huiqiu
    Shu, Jinlong
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (04): : 442 - 447
  • [34] A NOTE ON THE DISTANCE SPECTRAL RADIUS OF SOME GRAPHS
    Nath, Milan
    Paul, Somnath
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2014, 6 (01)
  • [35] Further results on the distance spectral radius of graphs
    Du, Zhibin
    Ilic, Aleksandar
    Feng, Lihua
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (09): : 1287 - 1301
  • [36] On the reciprocal distance Laplacian spectral radius of graphs
    Mushtaq, Ummer
    Pirzada, Shariefuddin
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [37] Connectivity and minimal distance spectral radius of graphs
    Zhang, Xiaoling
    Godsil, Chris
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (07): : 745 - 754
  • [38] On the distance signless Laplacian spectral radius of graphs
    Xing, Rundan
    Zhou, Bo
    Li, Jianping
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (10): : 1377 - 1387
  • [39] Perfect matching and distance spectral radius in graphs and bipartite graphs
    Zhang, Yuke
    Lin, Huiqiu
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 315 - 322
  • [40] Sharp bounds on the distance spectral radius and the distance energy of graphs
    Indulal, G.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 106 - 113