A Proof of a Conjecture on the Distance Spectral Radius and Maximum Transmission of Graphs

被引:0
|
作者
Lele Liu
Haiying Shan
Changxiang He
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Tongji University,School of Mathematical Sciences
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Distance matrix; Distance spectral radius; Non-transmission-regular graph; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple connected graph, and D(G) be the distance matrix of G. Suppose that Dmax(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)$$\end{document} and λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(G)$$\end{document} are the maximum row sum and the spectral radius of D(G), respectively. In this paper, we give a lower bound for Dmax(G)-λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)-\lambda _1(G)$$\end{document}, and characterize the extremal graphs attaining the bound. As a corollary, we solve a conjecture posed by Liu, Shu and Xue.
引用
下载
收藏
相关论文
共 50 条
  • [21] ON THE SIZE, SPECTRAL RADIUS, DISTANCE SPECTRAL RADIUS AND FRACTIONAL MATCHINGS IN GRAPHS
    LI, Shuchao
    Miao, Shujing
    Zhang, Minjie
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (02) : 187 - 199
  • [22] Distance Spectral Radius of Some k-partitioned Transmission Regular Graphs
    Atik, Fouzul
    Panigrahi, Pratima
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2016, 2016, 9602 : 26 - 36
  • [23] Proof of a conjecture on communicability distance sum index of graphs
    Huang, Xueyi
    Das, Kinkar Chandra
    Linear Algebra and Its Applications, 2022, 645 : 278 - 292
  • [24] Proof of a Conjecture on Distance Energy of Complete Multipartite Graphs
    Stevanovic, Dragan
    Milosevic, Marko
    Hic, Pavel
    Pokorny, Milan
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (01) : 157 - 162
  • [25] Proof of a conjecture on communicability distance sum index of graphs
    Huang, Xueyi
    Das, Kinkar Chandra
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 645 : 278 - 292
  • [26] THE MAXIMUM SPECTRAL RADIUS OF GRAPHS WITH A LARGE CORE
    He, Xiaocong
    Feng, Lihua
    Stevanovic, Dragan
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 78 - 89
  • [27] The maximum spectral radius of irregular bipartite graphs
    Xue, Jie
    Liu, Ruifang
    Guo, Jiaxin
    Shu, Jinlong
    ADVANCES IN APPLIED MATHEMATICS, 2023, 142
  • [28] On the spectral radius of tricyclic graphs with a maximum matching
    Geng, Xianya
    Li, Shuchao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (10) : 4043 - 4051
  • [29] On unicycle graphs with maximum Harary spectral radius
    Huang, Fei
    Wang, Shujing
    ARS COMBINATORIA, 2018, 140 : 311 - 319
  • [30] The spectral radius and the maximum degree of irregular graphs
    Cioaba, Sebastian M.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):