A Proof of a Conjecture on the Distance Spectral Radius and Maximum Transmission of Graphs

被引:0
|
作者
Lele Liu
Haiying Shan
Changxiang He
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Tongji University,School of Mathematical Sciences
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Distance matrix; Distance spectral radius; Non-transmission-regular graph; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple connected graph, and D(G) be the distance matrix of G. Suppose that Dmax(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)$$\end{document} and λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(G)$$\end{document} are the maximum row sum and the spectral radius of D(G), respectively. In this paper, we give a lower bound for Dmax(G)-λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)-\lambda _1(G)$$\end{document}, and characterize the extremal graphs attaining the bound. As a corollary, we solve a conjecture posed by Liu, Shu and Xue.
引用
下载
收藏
相关论文
共 50 条
  • [41] On the distance and distance Laplacian spectral radius of graphs with cut edges
    Fan, Dandan
    Niu, Aihong
    Wang, Guoping
    ARS COMBINATORIA, 2016, 125 : 287 - 298
  • [42] On generalized distance spectral radius and generalized distance energy of graphs
    Khan, Zia Ullah
    Zhang, Xiao-Dong
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (08)
  • [43] GENERALIZED DISTANCE SPECTRAL RADIUS OF SOME t-PARTITIONED TRANSMISSION REGULAR GRAPHS
    Howlader, A.
    Panigrahi, P.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 : 338 - 348
  • [44] A proof of a conjecture on maximum Wiener index of oriented ladder graphs
    Tadeja Kraner Šumenjak
    Simon Špacapan
    Daša Štesl
    Journal of Applied Mathematics and Computing, 2021, 67 : 481 - 493
  • [45] A proof of a conjecture on maximum Wiener index of oriented ladder graphs
    Sumenjak, Tadeja Kraner
    Spacapan, Simon
    Stesl, Dasa
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 67 (1-2) : 481 - 493
  • [46] Proof of a conjecture of Bollobas and Eldridge for graphs of maximum degree three
    Csaba, B
    Shokoufandeh, A
    Szemerédi, E
    COMBINATORICA, 2003, 23 (01) : 35 - 72
  • [47] Characterizing star factors via the size, the spectral radius or the distance spectral radius of graphs
    Miao, Shujing
    Li, Shuchao
    DISCRETE APPLIED MATHEMATICS, 2023, 326 : 17 - 32
  • [48] Maximum degree and spectral radius of graphs in terms of size
    Zhiwen Wang
    Ji-Ming Guo
    Journal of Algebraic Combinatorics, 2024, 59 : 213 - 224
  • [49] The maximum spectral radius of wheel-free graphs
    Zhao, Yanhua
    Huang, Xueyi
    Lin, Huiqiu
    DISCRETE MATHEMATICS, 2021, 344 (05)
  • [50] A Note on Spectral Radius and Maximum Degree of Irregular Graphs
    Feng, Rongquan
    Zhang, Wenqian
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 1121 - 1127