On the distance Laplacian spectral radius of bipartite graphs

被引:21
|
作者
Niu, Aihong [1 ]
Fan, Dandan [1 ]
Wang, Guoping [1 ]
机构
[1] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830054, Xinjiang, Peoples R China
关键词
Distance Laplacian spectral radius; Matching number; Vertex connectivity; GRAFT TRANSFORMATIONS; TREES;
D O I
10.1016/j.dam.2015.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that the vertex set of a graph G is V(G) = {v(1), ... v(n)}. Then we denote by Tr-G(v(i)) the sum of distances between v(i) and other vertices of G. Let Tr (G) be the n x n diagonal matrix with its (i, i)-entry equal to Tr-G(v(i)) and D(G) be the distance matrix of G. Then L-D(G) = Tr (G) - D(G) is the distance Laplacian matrix of G. The distance Laplacian spectral radius of G is the spectral radius of L-D(G). In this paper we describe the unique graph with minimum distance Laplacian spectral radius among all connected bipartite graphs of order n with a given matching number and a given vertex connectivity, respectively. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 50 条
  • [1] On the distance spectral radius of bipartite graphs
    Nath, Milan
    Paul, Somnath
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) : 1285 - 1296
  • [2] The Laplacian spectral radius of some bipartite graphs
    Zhang, Xiaoling
    Zhang, Heping
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1610 - 1619
  • [3] The Laplacian Spectral Radius of a Class of Bipartite Graphs
    Tan Xuezhong
    Liu, Bolian
    [J]. UTILITAS MATHEMATICA, 2012, 89 : 161 - 167
  • [4] A Lower Bound for the Distance Laplacian Spectral Radius of Bipartite Graphs with Given Diameter
    Qi, Linming
    Miao, Lianying
    Zhao, Weiliang
    Liu, Lu
    [J]. MATHEMATICS, 2022, 10 (08)
  • [5] On the distance Laplacian spectral radius of graphs
    Lin, Hongying
    Zhou, Bo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 475 : 265 - 275
  • [6] On the maximum signless Laplacian spectral radius of bipartite graphs
    Niu, Aihong
    Fan, Dandan
    Wang, Guoping
    [J]. ARS COMBINATORIA, 2018, 140 : 389 - 395
  • [7] On the distance Laplacian spectral radius of bipartite graphs (vol 186, pg 207, 2015)
    Niu, Aihong
    Wang, Guoping
    Fan, Dandan
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 208 : 137 - 140
  • [8] On the distance Laplacian spectral radius of bicyclic graphs
    Xu, Nannan
    Yu, Aimei
    Hao, Rong-Xia
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (19): : 4654 - 4674
  • [9] On the reciprocal distance Laplacian spectral radius of graphs
    Mushtaq, Ummer
    Pirzada, Shariefuddin
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [10] On the distance signless Laplacian spectral radius of graphs
    Xing, Rundan
    Zhou, Bo
    Li, Jianping
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (10): : 1377 - 1387