Cache memory is a key component for most microprocessors in embedded system. The increasing processing load has resulted in an upsurge in the demand for low power, high performance SRAM bit cells. Consequently, in this paper a 7T bit cell is designed for feature size 32 nm and 300 mV supply voltage. The improvement in the performance of the proposed cell is validated against the results obtained for pre-existing 6T, 7T, 8T, 9T, and 10T cells. The read and hold noise margin for the cell is obtained to be 96 and 68 mV respectively, whereas the static margin for the write operation is 170 mV. To perform a successful write operation, a pulse-width of 30 ns is utilized. The power analysis reveals that the proposed cell has minimal read/write power consumption. The leakage power for the cell is 8.4 pW and 1.2 pW for Q = ‘0’ and ‘1’ respectively. Tolerance analysis justifies that the cell maintains its functionality and yields credible outputs under process-voltage-temperature variations for static performance metrics. The layout for the proposed 7T cell occupies 0.584 µm2 area. This is 5.55% smaller than a single ended 6T. The area for other 7T counterparts, 8T, 9T, and 10T cells is larger than the proposed cell.