Boundary Effects on the Structural Stability of Stationary Patterns in a Bistable Reaction-Diffusion System

被引:0
|
作者
G. G. Izús
J. Reyes de Rueda
C. H. Borzi
机构
[1] Universidad Nacional de Mar del Plata,Departamento de Física, Facultad de Ciencias Exactas y Naturales
[2] MONDITEC S.A.,undefined
[3] Olazabal 1927,undefined
[4] (,undefined
来源
关键词
Hot-spot model; reaction-diffusion; structural stability; non-equilibrium potential; albedo BCs;
D O I
暂无
中图分类号
学科分类号
摘要
We study a piecewise linear version of a one-component, two-dimensional bistable reaction-diffusion system subjected to partially reflecting boundary conditions, with the aim of analyzing the structural stability of its stationary patterns. Dirichlet and Neumann boundary conditions are included as limiting cases. We find a critical line in the space of the parameters which divides different dynamical behaviors. That critical line merges as the locus of the coalescence of metastable and unstable nonuniform structures.
引用
收藏
页码:103 / 117
页数:14
相关论文
共 50 条