Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion

被引:19
|
作者
Zemskov, Evgeny P. [1 ]
Tsyganov, Mikhail A. [2 ]
Horsthemke, Werner [3 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Vavilova 40, Moscow 119333, Russia
[2] Russian Acad Sci, Inst Theoret & Expt Biophys, Inst Skaya 3, Pushchino 142290, Moscow Region, Russia
[3] Southern Methodist Univ, Dept Chem, Dallas, TX 75275 USA
关键词
ELASTIC EXCITABLE MEDIA; FITZHUGH-NAGUMO SYSTEM; DYNAMICS; MODEL; PROPAGATION; SEGREGATION; CHEMOTAXIS; EQUATION; TAILS;
D O I
10.1103/PhysRevE.95.012203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction-diffusion system
    Nagayama, Masaharu
    Ueda, Kei-ichi
    Yadome, Masaaki
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (02) : 295 - 322
  • [2] Oscillatory multipulsons: Dissipative soliton trains in bistable reaction-diffusion systems with cross diffusion of attractive-repulsive type
    Zemskov, Evgeny P.
    Tsyganov, Mikhail A.
    Horsthemke, Werner
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [3] Establishing traveling wave in bistable reaction-diffusion system by feedback
    Bliman P.-A.
    Vauchelet N.
    Bliman, Pierre-Alexandre (pierre-alexandre.bliman@inria.fr), 1600, Institute of Electrical and Electronics Engineers Inc., United States (01): : 62 - 67
  • [4] The bistable wave speed in a reaction-diffusion system with seasonal succession
    Chen, Yangwei
    Li, Wenxiu
    Zhang, Qiming
    Ma, Manjun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (02)
  • [5] BIFURCATIONS IN A BISTABLE REACTION-DIFFUSION SYSTEM
    EBELING, W
    MALCHOW, H
    ANNALEN DER PHYSIK, 1979, 36 (02) : 121 - 134
  • [6] Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion
    Zemskov, Evgeny P.
    Tsyganov, Mikhail A.
    Horsthemke, Werner
    PHYSICAL REVIEW E, 2018, 97 (06)
  • [7] Pulses and waves for a bistable nonlocal reaction-diffusion equation
    Volpert, V.
    APPLIED MATHEMATICS LETTERS, 2015, 44 : 21 - 25
  • [8] Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction–diffusion system
    Masaharu Nagayama
    Kei-ichi Ueda
    Masaaki Yadome
    Japan Journal of Industrial and Applied Mathematics, 2010, 27 : 295 - 322
  • [9] Out-of-phase oscillatory Turing patterns in a bistable reaction-diffusion system
    Vanag, VK
    Epstein, IR
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [10] Two types of sources of wave trains in a two-variable chemical model of a bistable reaction-diffusion system
    Leda, M
    Kawczynski, AL
    JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (38): : 7660 - 7670