Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion

被引:19
|
作者
Zemskov, Evgeny P. [1 ]
Tsyganov, Mikhail A. [2 ]
Horsthemke, Werner [3 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Vavilova 40, Moscow 119333, Russia
[2] Russian Acad Sci, Inst Theoret & Expt Biophys, Inst Skaya 3, Pushchino 142290, Moscow Region, Russia
[3] Southern Methodist Univ, Dept Chem, Dallas, TX 75275 USA
关键词
ELASTIC EXCITABLE MEDIA; FITZHUGH-NAGUMO SYSTEM; DYNAMICS; MODEL; PROPAGATION; SEGREGATION; CHEMOTAXIS; EQUATION; TAILS;
D O I
10.1103/PhysRevE.95.012203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] PULSES AND GLOBAL BIFURCATIONS IN A NONLOCAL REACTION-DIFFUSION SYSTEM
    GRAHAM, MD
    MIDDYA, U
    LUSS, D
    PHYSICAL REVIEW E, 1993, 48 (04): : 2917 - 2923
  • [42] OSCILLATORY REACTION-DIFFUSION EQUATIONS ON RINGS
    LUBKIN, S
    RAND, R
    JOURNAL OF MATHEMATICAL BIOLOGY, 1994, 32 (06) : 617 - 632
  • [43] Cross-Diffusion Limit for a Reaction-Diffusion System with Fast Reversible Reaction
    Bothe, Dieter
    Pierre, Michel
    Rolland, Guillaume
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (11) : 1940 - 1966
  • [44] LAYERED SOLUTIONS TO A BISTABLE REACTION-DIFFUSION EQUATION
    CHEN, B
    FLORES, G
    SHIH, SD
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 117 (01) : 217 - 244
  • [45] THE DETERMINACY OF WAVE SPEED SIGN FOR A REACTION-DIFFUSION SYSTEM WITH NONLOCAL DIFFUSION
    Wang, Kaili
    Meng, Wentao
    Li, Xu
    Ma, Manjun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (07) : 2845 - 2861
  • [46] Wavefronts in bistable hyperbolic reaction-diffusion systems
    Mendez, V
    Compte, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 260 (1-2) : 90 - 98
  • [47] BISTABLE REACTION-DIFFUSION EQUATIONS AND EXCITABLE MEDIA
    GARTNER, J
    MATHEMATISCHE NACHRICHTEN, 1983, 112 : 125 - 152
  • [48] Inwardly rotating spiral wave breakup in oscillatory reaction-diffusion media
    Xie, Fagen
    Xie, Dongzhu
    Weiss, James N.
    PHYSICAL REVIEW E, 2006, 74 (02):
  • [49] EXISTENCE OF PULSES IN REACTION-DIFFUSION EQUATIONS
    SCHNEIDER, KR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T780 - T782
  • [50] Reaction-diffusion pulses: a combustion model
    Campos, D
    Llebot, JE
    Fort, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6609 - 6621