Boundary Effects on the Structural Stability of Stationary Patterns in a Bistable Reaction-Diffusion System

被引:0
|
作者
G. G. Izús
J. Reyes de Rueda
C. H. Borzi
机构
[1] Universidad Nacional de Mar del Plata,Departamento de Física, Facultad de Ciencias Exactas y Naturales
[2] MONDITEC S.A.,undefined
[3] Olazabal 1927,undefined
[4] (,undefined
来源
关键词
Hot-spot model; reaction-diffusion; structural stability; non-equilibrium potential; albedo BCs;
D O I
暂无
中图分类号
学科分类号
摘要
We study a piecewise linear version of a one-component, two-dimensional bistable reaction-diffusion system subjected to partially reflecting boundary conditions, with the aim of analyzing the structural stability of its stationary patterns. Dirichlet and Neumann boundary conditions are included as limiting cases. We find a critical line in the space of the parameters which divides different dynamical behaviors. That critical line merges as the locus of the coalescence of metastable and unstable nonuniform structures.
引用
收藏
页码:103 / 117
页数:14
相关论文
共 50 条
  • [21] Existence of Waves for a Bistable Reaction-Diffusion System with Delay
    Volpert, V.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 615 - 629
  • [22] Stability of planar traveling fronts in bistable reaction-diffusion systems
    Sheng, Wei-Jie
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 156 : 42 - 60
  • [23] FROM SUSTAINED OSCILLATIONS TO STATIONARY REACTION-DIFFUSION PATTERNS
    De Kepper, P.
    Boissonade, J.
    Szalai, I.
    CHEMOMECHANICAL INSTABILITIES IN RESPONSIVE MATERIALS, 2009, : 1 - +
  • [24] GLOBAL EXPONENTIAL STABILITY OF BISTABLE TRAVELING WAVES IN A REACTION-DIFFUSION SYSTEM WITH CUBIC NONLINEARITY
    Zhang, Tingting
    Li, Wenxiu
    Han, Yazhou
    Ma, Manjun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (07) : 2215 - 2232
  • [25] Boundary effects in reaction-diffusion processes
    Richardson, MJE
    Kafri, Y
    PHYSICAL REVIEW E, 1999, 59 (05): : R4725 - R4728
  • [27] GLOBAL STABILITY OF STATIONARY SOLUTIONS OF REACTION-DIFFUSION SYSTEMS
    GARDNER, RA
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (01) : 60 - 69
  • [28] FREE BOUNDARY PROBLEM FOR A REACTION-DIFFUSION EQUATION WITH POSITIVE BISTABLE NONLINEARITY
    Endo, Maho
    Kanek, Yuki
    Yamada, Yoshio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (06) : 3375 - 3394
  • [29] Turing patterns in a reaction-diffusion system
    Wu, YN
    Wang, PJ
    Hou, CJ
    Liu, CS
    Zhu, ZG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 761 - 764
  • [30] Turing Patterns in a Reaction-Diffusion System
    WU Yan-Ning WANG Ping-Jian HOU Chun-Ju LIU Chang-Song ZHU Zhen-Gang Key Laboratory of Material Physics
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 761 - 764