Boundary Effects on the Structural Stability of Stationary Patterns in a Bistable Reaction-Diffusion System

被引:0
|
作者
G. G. Izús
J. Reyes de Rueda
C. H. Borzi
机构
[1] Universidad Nacional de Mar del Plata,Departamento de Física, Facultad de Ciencias Exactas y Naturales
[2] MONDITEC S.A.,undefined
[3] Olazabal 1927,undefined
[4] (,undefined
来源
关键词
Hot-spot model; reaction-diffusion; structural stability; non-equilibrium potential; albedo BCs;
D O I
暂无
中图分类号
学科分类号
摘要
We study a piecewise linear version of a one-component, two-dimensional bistable reaction-diffusion system subjected to partially reflecting boundary conditions, with the aim of analyzing the structural stability of its stationary patterns. Dirichlet and Neumann boundary conditions are included as limiting cases. We find a critical line in the space of the parameters which divides different dynamical behaviors. That critical line merges as the locus of the coalescence of metastable and unstable nonuniform structures.
引用
收藏
页码:103 / 117
页数:14
相关论文
共 50 条
  • [31] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94
  • [32] Structural stability for scalar reaction-diffusion equations
    Lee, Jihoon
    Pires, Leonardo
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (54) : 1 - 12
  • [33] Establishing traveling wave in bistable reaction-diffusion system by feedback
    Bliman P.-A.
    Vauchelet N.
    Bliman, Pierre-Alexandre (pierre-alexandre.bliman@inria.fr), 1600, Institute of Electrical and Electronics Engineers Inc., United States (01): : 62 - 67
  • [34] PATTERN-FORMATION IN A BISTABLE IONIC REACTION-DIFFUSION SYSTEM
    MALCHOW, H
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1985, 10 (01) : 15 - 28
  • [35] The bistable wave speed in a reaction-diffusion system with seasonal succession
    Chen, Yangwei
    Li, Wenxiu
    Zhang, Qiming
    Ma, Manjun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 518 (02)
  • [36] On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law
    Peng, Rui
    Shi, Junping
    Wang, Mingxin
    NONLINEARITY, 2008, 21 (07) : 1471 - 1488
  • [37] Contribution to an effective design method for stationary reaction-diffusion patterns
    Szalai, Istvan
    Horvath, Judit
    De Kepper, Patrick
    CHAOS, 2015, 25 (06)
  • [38] On the spatial structure of stationary patterns in a class of reaction-diffusion systems
    Yan, JG
    Lim, CC
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 1997, 3 (02): : 131 - 150
  • [39] Stable stationary patterns and interfaces arising in reaction-diffusion systems
    Oshita, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (02) : 479 - 497
  • [40] Existence and stability of boundary layer's solutions to a system of reaction-diffusion equations
    Zhou, L
    Duan, ZW
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (04) : 641 - 657