Riemann-Hilbert problems for monogenic functions in axially symmetric domains

被引:0
|
作者
Fuli He
Min Ku
Uwe Kähler
Frank Sommen
Swanhild Bernstein
机构
[1] Central South University,School of Mathematics and Statistics
[2] University of Aveiro,CIDMA, Department of Mathematics
[3] Ghent University,Clifford Research Group, Department of Mathematical Analysis
[4] Institute of Applied Analysis,TU Bergakademie Freiberg
来源
关键词
quaternion analysis; generalized Cauchy-Riemann operator; axial symmetry; Riemann-Hilbert boundary value problems; variable coefficients; 30E25; 35Q15; 31A25; 31B20; 31B10; 35J56; 35J58;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Riemann-Hilbert boundary value problems (for short RHBVPs) with variable coefficients for axially symmetric monogenic functions defined in axial symmetric domains. This is done by constructing a method to reduce the RHBVPs for axially symmetric monogenic functions defined in four-dimensional axial symmetric domains into the RHBVPs for analytic functions defined over the complex plane. Then we derive solutions to the corresponding Schwarz problem. Finally, we generalize the results obtained to null-solutions of (D−α)ϕ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{D}-\alpha)\phi=0$\end{document}, α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in\mathbb{R}$\end{document}, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}$\end{document} denotes the field of real numbers.
引用
收藏
相关论文
共 50 条
  • [1] Riemann-Hilbert problems for monogenic functions in axially symmetric domains
    He, Fuli
    Ku, Min
    Kahler, Uwe
    Sommen, Frank
    Bernstein, Swanhild
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 11
  • [2] Riemann-Hilbert Problems for Biaxially Symmetric Monogenic Functions in Rn
    Zuo, Dian
    Ku, Min
    He, Fuli
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2025, 35 (01)
  • [3] Riemann-Hilbert problems for null-solutions to iterated generalized Cauchy-Riemann equations in axially symmetric domains
    He, Fuli
    Ku, Min
    Kahler, Uwe
    Sommen, Frank
    Bernstein, Swanhild
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) : 1990 - 2000
  • [4] Riemann-Hilbert Problems for Monogenic Functions on Upper Half Ball of R4
    Ku, Min
    Wang, Ying
    He, Fuli
    Kahler, Uwe
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) : 2493 - 2508
  • [5] Nonlinear Riemann-Hilbert Problems for Axial- and Bi-axial-monogenic Functions
    Almeida, M.
    Cerejeiras, P.
    Kaehler, U.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (01)
  • [6] Nonlinear Riemann-Hilbert Problems for Axial- and Bi-axial-monogenic Functions
    M. Almeida
    P. Cerejeiras
    U. Kähler
    Complex Analysis and Operator Theory, 2024, 18
  • [7] Solving Riemann-Hilbert problems with meromorphic functions
    Kucerovsky, Dan
    Sarraf, Aydin
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 117 - 130
  • [8] Nonlinear Riemann-Hilbert problems for multiply connected domains
    Efendiev, MA
    Wendland, WL
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (01) : 37 - 58
  • [9] Riemann-Hilb ert Problems for Axially Symmetric Monogenic Functions in Rn+1
    Huang, Qian
    He, Fuli
    Ku, Min
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (02)
  • [10] NONLINEAR RIEMANN-HILBERT PROBLEMS FOR GENERALIZED ANALYTIC FUNCTIONS
    Efendiev, Messoud A.
    Wendland, Wolfgang L.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 40 (02) : 185 - 208