Riemann-Hilbert problems for monogenic functions in axially symmetric domains

被引:0
|
作者
Fuli He
Min Ku
Uwe Kähler
Frank Sommen
Swanhild Bernstein
机构
[1] Central South University,School of Mathematics and Statistics
[2] University of Aveiro,CIDMA, Department of Mathematics
[3] Ghent University,Clifford Research Group, Department of Mathematical Analysis
[4] Institute of Applied Analysis,TU Bergakademie Freiberg
来源
关键词
quaternion analysis; generalized Cauchy-Riemann operator; axial symmetry; Riemann-Hilbert boundary value problems; variable coefficients; 30E25; 35Q15; 31A25; 31B20; 31B10; 35J56; 35J58;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Riemann-Hilbert boundary value problems (for short RHBVPs) with variable coefficients for axially symmetric monogenic functions defined in axial symmetric domains. This is done by constructing a method to reduce the RHBVPs for axially symmetric monogenic functions defined in four-dimensional axial symmetric domains into the RHBVPs for analytic functions defined over the complex plane. Then we derive solutions to the corresponding Schwarz problem. Finally, we generalize the results obtained to null-solutions of (D−α)ϕ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{D}-\alpha)\phi=0$\end{document}, α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in\mathbb{R}$\end{document}, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}$\end{document} denotes the field of real numbers.
引用
收藏
相关论文
共 50 条
  • [21] Loop spaces and Riemann-Hilbert problems
    Khimshiashvili, G.
    GEOMETRY AND TOPOLOGY OF MANIFOLDS: THE MATHEMATICAL LEGACY OF CHARLES EHRESMANN ON THE OCCASION OF THE HUNDREDTH ANNIVERSARY OF HIS BIRTHDAY, 2007, 76 : 411 - 424
  • [22] On Riemann-Hilbert Problems in Circle Packing
    Elias Wegert
    David Bauer
    Computational Methods and Function Theory, 2009, 9 (2) : 609 - 632
  • [23] Orientable and nonorientable Riemann-Hilbert problems
    Efendiev, MA
    Wendland, WL
    PROBLEMS AND METHODS IN MATHEMATICAL PHYSICS: THE SIEGFRIED PROSSDORF MEMORIAL VOLUME, 2001, 121 : 73 - 88
  • [24] Factorization in a torus and Riemann-Hilbert problems
    Camara, M. C.
    Malheiro, M. T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 343 - 363
  • [25] Asymptotics of oscillatory Riemann-Hilbert problems
    Varzugin, GG
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (11) : 5869 - 5892
  • [26] Asymptotics of Oscillatory Riemann-Hilbert Problems
    UNIFIED APPROACH TO BOUNDARY VALUE PROBLEMS, 2008, 78 : 301 - 313
  • [27] Noncommutative monopoles and Riemann-Hilbert problems
    Lechtenfeld, O
    Popov, AD
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (01):
  • [28] On the Riemann-Hilbert problem in multiply connected domains
    Ryazanov, Vladimir
    OPEN MATHEMATICS, 2016, 14 : 13 - 18
  • [29] An approximation for a subclass of the Riemann-Hilbert problems
    Kucerovsky, Dan
    Payandeh Najafabadi, Amir T.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2009, 74 (04): : 533 - 547
  • [30] On the origins of Riemann-Hilbert problems in mathematics*
    Bothner, Thomas
    NONLINEARITY, 2021, 34 (04) : R1 - R73