Riemann-Hilbert problems for monogenic functions in axially symmetric domains

被引:0
|
作者
Fuli He
Min Ku
Uwe Kähler
Frank Sommen
Swanhild Bernstein
机构
[1] Central South University,School of Mathematics and Statistics
[2] University of Aveiro,CIDMA, Department of Mathematics
[3] Ghent University,Clifford Research Group, Department of Mathematical Analysis
[4] Institute of Applied Analysis,TU Bergakademie Freiberg
来源
关键词
quaternion analysis; generalized Cauchy-Riemann operator; axial symmetry; Riemann-Hilbert boundary value problems; variable coefficients; 30E25; 35Q15; 31A25; 31B20; 31B10; 35J56; 35J58;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Riemann-Hilbert boundary value problems (for short RHBVPs) with variable coefficients for axially symmetric monogenic functions defined in axial symmetric domains. This is done by constructing a method to reduce the RHBVPs for axially symmetric monogenic functions defined in four-dimensional axial symmetric domains into the RHBVPs for analytic functions defined over the complex plane. Then we derive solutions to the corresponding Schwarz problem. Finally, we generalize the results obtained to null-solutions of (D−α)ϕ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{D}-\alpha)\phi=0$\end{document}, α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in\mathbb{R}$\end{document}, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}$\end{document} denotes the field of real numbers.
引用
收藏
相关论文
共 50 条