Riemann-Hilbert problems for monogenic functions in axially symmetric domains

被引:0
|
作者
Fuli He
Min Ku
Uwe Kähler
Frank Sommen
Swanhild Bernstein
机构
[1] Central South University,School of Mathematics and Statistics
[2] University of Aveiro,CIDMA, Department of Mathematics
[3] Ghent University,Clifford Research Group, Department of Mathematical Analysis
[4] Institute of Applied Analysis,TU Bergakademie Freiberg
来源
关键词
quaternion analysis; generalized Cauchy-Riemann operator; axial symmetry; Riemann-Hilbert boundary value problems; variable coefficients; 30E25; 35Q15; 31A25; 31B20; 31B10; 35J56; 35J58;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Riemann-Hilbert boundary value problems (for short RHBVPs) with variable coefficients for axially symmetric monogenic functions defined in axial symmetric domains. This is done by constructing a method to reduce the RHBVPs for axially symmetric monogenic functions defined in four-dimensional axial symmetric domains into the RHBVPs for analytic functions defined over the complex plane. Then we derive solutions to the corresponding Schwarz problem. Finally, we generalize the results obtained to null-solutions of (D−α)ϕ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{D}-\alpha)\phi=0$\end{document}, α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha\in\mathbb{R}$\end{document}, where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}$\end{document} denotes the field of real numbers.
引用
收藏
相关论文
共 50 条
  • [41] Riemann-Hilbert problems, Toeplitz operators and ergosurfaces
    Camara, M. Cristina
    Cardoso, Gabriel Lopes
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (06):
  • [42] Riemann-Hilbert Problems for Hurwitz Frobenius Manifolds
    Korotkin, Dmitry
    Shramchenko, Vasilisa
    LETTERS IN MATHEMATICAL PHYSICS, 2011, 96 (1-3) : 109 - 121
  • [43] Riemann-Hilbert problems for multiple orthogonal polynomials
    Van Assche, W
    Geronimo, JS
    Kuijlaars, ABJ
    SPECIAL FUNCTIONS 2000: CURRENT PERSPECTIVE AND FUTURE DIRECTIONS, 2001, 30 : 23 - 59
  • [44] Factorizations, Riemann-Hilbert problems and the corona theorem
    Camara, M. C.
    Diogo, C.
    Karlovich, Yu. I.
    Spitkovsky, I. M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 : 852 - 878
  • [45] Explicit Riemann-Hilbert problems in Hardy spaces
    Semmler, Gunter
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (8-9) : 1099 - 1117
  • [46] Oscillatory Riemann-Hilbert problems and the corona theorem
    Bastos, MA
    Karlovich, YI
    dos Santos, AF
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 197 (02) : 347 - 397
  • [47] Nonlinear Riemann-Hilbert problems without transversality
    Efendiev, MA
    Wendland, WL
    MATHEMATISCHE NACHRICHTEN, 1997, 183 : 73 - 89
  • [48] Quantum Riemann-Hilbert problems for the resolved conifold
    Chuang, Wu-yen
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 190
  • [49] THE DRESSING METHOD AND NONLOCAL RIEMANN-HILBERT PROBLEMS
    FOKAS, AS
    ZAKHAROV, VE
    JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 109 - 134
  • [50] Nonlinear Riemann-Hilbert Problems and Boundary Interpolation
    Gunter Semmler
    Elias Wegert
    Computational Methods and Function Theory, 2004, 3 (1) : 179 - 199