Riemann-Hilbert Problems for Biaxially Symmetric Monogenic Functions in Rn

被引:0
|
作者
Zuo, Dian [1 ]
Ku, Min [2 ]
He, Fuli [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Univ Radboud, Dept Comp Sci, NL-6525 EC Nijmegen, Netherlands
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; Clifford analysis; Biaxial symmetry; Dirac operator; Monogenic function; Generalized analytic funcion;
D O I
10.1007/s00006-024-01364-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are dedicated to addressing Riemann-Hilbert boundary value problems (RHBVPs) with variable coefficients, where the solutions are valued in the Clifford algebra of R-0,R-n, for biaxially monogenic functions defined in the biaxially symmetric domains of the Euclidean space R-n. Our research establishes the equivalence between RHBVPs for biaxially monogenic functions defined in biaxially domains and RHBVPs for generalized analytic functions on the complex plane. We derive explicit solutions and conditions for solvability of RHBVPs for biaxially monogenic functions. Additionally, we explore related Schwarz problems and RHBVPs for biaxially meta-monogenic functions.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Riemann-Hilbert problems for monogenic functions in axially symmetric domains
    Fuli He
    Min Ku
    Uwe Kähler
    Frank Sommen
    Swanhild Bernstein
    Boundary Value Problems, 2016
  • [2] Riemann-Hilbert problems for monogenic functions in axially symmetric domains
    He, Fuli
    Ku, Min
    Kahler, Uwe
    Sommen, Frank
    Bernstein, Swanhild
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 11
  • [3] Riemann-Hilbert Problems for Monogenic Functions on Upper Half Ball of R4
    Ku, Min
    Wang, Ying
    He, Fuli
    Kahler, Uwe
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (03) : 2493 - 2508
  • [4] Nonlinear Riemann-Hilbert Problems for Axial- and Bi-axial-monogenic Functions
    Almeida, M.
    Cerejeiras, P.
    Kaehler, U.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (01)
  • [5] Nonlinear Riemann-Hilbert Problems for Axial- and Bi-axial-monogenic Functions
    M. Almeida
    P. Cerejeiras
    U. Kähler
    Complex Analysis and Operator Theory, 2024, 18
  • [6] Solving Riemann-Hilbert problems with meromorphic functions
    Kucerovsky, Dan
    Sarraf, Aydin
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2019, 11 (01) : 117 - 130
  • [7] Riemann-Hilb ert Problems for Axially Symmetric Monogenic Functions in Rn+1
    Huang, Qian
    He, Fuli
    Ku, Min
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (02)
  • [8] NONLINEAR RIEMANN-HILBERT PROBLEMS FOR GENERALIZED ANALYTIC FUNCTIONS
    Efendiev, Messoud A.
    Wendland, Wolfgang L.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 40 (02) : 185 - 208
  • [9] RIEMANN-HILBERT PROBLEMS WITH CONSTRAINTS
    Bertrand, Florian
    Della Sala, Giuseppe
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) : 2123 - 2131
  • [10] Formulation of Riemann-Hilbert Problems
    UNIFIED APPROACH TO BOUNDARY VALUE PROBLEMS, 2008, 78 : 189 - 194