Riemann-Hilbert Problems for Biaxially Symmetric Monogenic Functions in Rn

被引:0
|
作者
Zuo, Dian [1 ]
Ku, Min [2 ]
He, Fuli [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Univ Radboud, Dept Comp Sci, NL-6525 EC Nijmegen, Netherlands
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; Clifford analysis; Biaxial symmetry; Dirac operator; Monogenic function; Generalized analytic funcion;
D O I
10.1007/s00006-024-01364-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are dedicated to addressing Riemann-Hilbert boundary value problems (RHBVPs) with variable coefficients, where the solutions are valued in the Clifford algebra of R-0,R-n, for biaxially monogenic functions defined in the biaxially symmetric domains of the Euclidean space R-n. Our research establishes the equivalence between RHBVPs for biaxially monogenic functions defined in biaxially domains and RHBVPs for generalized analytic functions on the complex plane. We derive explicit solutions and conditions for solvability of RHBVPs for biaxially monogenic functions. Additionally, we explore related Schwarz problems and RHBVPs for biaxially meta-monogenic functions.
引用
收藏
页数:21
相关论文
共 50 条