Riemann-Hilbert Problems for Biaxially Symmetric Monogenic Functions in Rn

被引:0
|
作者
Zuo, Dian [1 ]
Ku, Min [2 ]
He, Fuli [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Univ Radboud, Dept Comp Sci, NL-6525 EC Nijmegen, Netherlands
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; Clifford analysis; Biaxial symmetry; Dirac operator; Monogenic function; Generalized analytic funcion;
D O I
10.1007/s00006-024-01364-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are dedicated to addressing Riemann-Hilbert boundary value problems (RHBVPs) with variable coefficients, where the solutions are valued in the Clifford algebra of R-0,R-n, for biaxially monogenic functions defined in the biaxially symmetric domains of the Euclidean space R-n. Our research establishes the equivalence between RHBVPs for biaxially monogenic functions defined in biaxially domains and RHBVPs for generalized analytic functions on the complex plane. We derive explicit solutions and conditions for solvability of RHBVPs for biaxially monogenic functions. Additionally, we explore related Schwarz problems and RHBVPs for biaxially meta-monogenic functions.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Noncommutative monopoles and Riemann-Hilbert problems
    Lechtenfeld, O
    Popov, AD
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (01):
  • [22] An approximation for a subclass of the Riemann-Hilbert problems
    Kucerovsky, Dan
    Payandeh Najafabadi, Amir T.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 2009, 74 (04): : 533 - 547
  • [23] On the origins of Riemann-Hilbert problems in mathematics*
    Bothner, Thomas
    NONLINEARITY, 2021, 34 (04) : R1 - R73
  • [24] RIEMANN-HILBERT PROBLEMS FOR THE RESOLVED CONIFOLD
    Bridgeland, Tom
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (03) : 395 - 435
  • [25] Separation Principles and Riemann-Hilbert Problems
    Gunter Semmler
    Elias Wegert
    Computational Methods and Function Theory, 2003, 2 (1) : 175 - 190
  • [26] Riemann-Hilbert problems in Clifford analysis
    Bernstein, S
    CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 1 - 8
  • [27] Asymptotic expansions for Riemann-Hilbert problems
    Qiu, W. -Y.
    Wong, R.
    ANALYSIS AND APPLICATIONS, 2008, 6 (03) : 269 - 298
  • [28] An approximation for a subclass of the Riemann-Hilbert problems
    Kucerovsky, Dan
    Najafabadi, Amir T. Payandeh
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (04) : 533 - 547
  • [29] Schwarz, Riemann, Riemann-Hilbert Problems and Their Connections in Polydomains
    Mohammed, Alip
    PSEUDO-DIFFERENTIAL OPERATORS: COMPLEX ANALYSIS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 205 : 143 - 166
  • [30] Matrix Riemann-Hilbert problems and factorization on Riemann surfaces
    Camara, M. C.
    dos Santos, A. F.
    dos Santos, Pedro F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) : 228 - 254