Cubic spline quasi-interpolants on Powell–Sabin partitions

被引:0
|
作者
A. Lamnii
M. Lamnii
H. Mraoui
机构
[1] Faculty of Science and Technology,
[2] University Hassan First,undefined
[3] Faculty of Science,undefined
[4] University Mohammed First,undefined
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Super spline; Powell–Sabin splines; Normalized B-splines; Blossoms; Polarization identity; Quasi-interpolation; 41A15; 65D05; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
By using the polarization identity, we propose a family of quasi-interpolants based on bivariate C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{C}}^1$$\end{document} cubic super splines defined on triangulations with a Powell–Sabin refinement. Their spline coefficients only depend on a set of local function values. The quasi-interpolants reproduce cubic polynomials and have an optimal approximation order.
引用
收藏
页码:1099 / 1118
页数:19
相关论文
共 50 条
  • [1] Cubic spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Lamnii, M.
    Mraoui, H.
    BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 1099 - 1118
  • [2] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Carla Manni
    Paul Sablonnière
    Advances in Computational Mathematics, 2007, 26 : 283 - 304
  • [3] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Manni, Carla
    Sablonniere, Paul
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 283 - 304
  • [4] Superconvergent quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    APPLIED NUMERICAL MATHEMATICS, 2015, 87 : 74 - 86
  • [5] Quadratic spherical spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Mraoui, H.
    Sbibih, D.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 1094 - 1109
  • [6] Superconvergent C1 cubic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, Driss
    Serghini, Abdelhafid
    Tijini, Ahmed
    Zidna, Ahmed
    BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 797 - 821
  • [7] Polar forms and quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 938 - 958
  • [8] Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions
    P. Sablonnière
    D. Sbibih
    M. Tahrichi
    BIT Numerical Mathematics, 2013, 53 : 175 - 192
  • [9] Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sablonniere, P.
    Sbibih, D.
    Tahrichi, M.
    BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 175 - 192
  • [10] Quadratic spline quasi-interpolants on Powell-Sabin partitions (vol 26, pg 237, 2007)
    Manni, Carla
    Sablonniere, Paul
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (01) : 94 - 94