By using the polarization identity, we propose a family of quasi-interpolants based on bivariate C1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\fancyscript{C}}^1$$\end{document} cubic super splines defined on triangulations with a Powell–Sabin refinement. Their spline coefficients only depend on a set of local function values. The quasi-interpolants reproduce cubic polynomials and have an optimal approximation order.
机构:
Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R China
Wu, Jinming
Ge, Wurong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R China
Ge, Wurong
Zhang, Xiaolei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R ChinaZhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R China