Cubic spline quasi-interpolants on Powell–Sabin partitions

被引:0
|
作者
A. Lamnii
M. Lamnii
H. Mraoui
机构
[1] Faculty of Science and Technology,
[2] University Hassan First,undefined
[3] Faculty of Science,undefined
[4] University Mohammed First,undefined
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Super spline; Powell–Sabin splines; Normalized B-splines; Blossoms; Polarization identity; Quasi-interpolation; 41A15; 65D05; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
By using the polarization identity, we propose a family of quasi-interpolants based on bivariate C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{C}}^1$$\end{document} cubic super splines defined on triangulations with a Powell–Sabin refinement. Their spline coefficients only depend on a set of local function values. The quasi-interpolants reproduce cubic polynomials and have an optimal approximation order.
引用
收藏
页码:1099 / 1118
页数:19
相关论文
共 50 条
  • [21] Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions
    Barrera, D.
    Ibanez, M. J.
    Sablonniere, P.
    Sbibih, D.
    CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) : 237 - 251
  • [22] A Family of Spline Quasi-Interpolants on the Sphere
    O. Nouisser
    D. Sbibih
    Paul Sablonnière
    Numerical Algorithms, 2003, 33 : 399 - 413
  • [23] Bivariate Simplex Spline Quasi-Interpolants
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (01) : 97 - 118
  • [24] A family of spline quasi-interpolants on the sphere
    Nouisser, O
    Sbibih, D
    Sablonnière, P
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 399 - 413
  • [25] Integro spline quasi-interpolants and their super convergence
    Wu, Jinming
    Ge, Wurong
    Zhang, Xiaolei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [26] Quadratic spline quasi-interpolants and collocation methods
    Foucher, Francoise
    Sablonniere, Paul
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) : 3455 - 3465
  • [27] Integro spline quasi-interpolants and their super convergence
    Jinming Wu
    Wurong Ge
    Xiaolei Zhang
    Computational and Applied Mathematics, 2020, 39
  • [28] Algebraic hyperbolic spline quasi-interpolants and applications
    Eddargani, S.
    Lamnii, A.
    Lamnii, M.
    Sbibih, D.
    Zidna, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 347 : 196 - 209
  • [29] QUASI-INTERPOLANTS FROM SPLINE INTERPOLATION OPERATORS
    SMITH, PW
    WARD, JD
    CONSTRUCTIVE APPROXIMATION, 1990, 6 (01) : 97 - 110
  • [30] Increasing the approximation order of spline quasi-interpolants
    Barrera, D.
    Guessab, A.
    Ibanez, M. J.
    Nouisser, O.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 252 : 27 - 39