Cubic spline quasi-interpolants on Powell–Sabin partitions

被引:0
|
作者
A. Lamnii
M. Lamnii
H. Mraoui
机构
[1] Faculty of Science and Technology,
[2] University Hassan First,undefined
[3] Faculty of Science,undefined
[4] University Mohammed First,undefined
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Super spline; Powell–Sabin splines; Normalized B-splines; Blossoms; Polarization identity; Quasi-interpolation; 41A15; 65D05; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
By using the polarization identity, we propose a family of quasi-interpolants based on bivariate C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{C}}^1$$\end{document} cubic super splines defined on triangulations with a Powell–Sabin refinement. Their spline coefficients only depend on a set of local function values. The quasi-interpolants reproduce cubic polynomials and have an optimal approximation order.
引用
收藏
页码:1099 / 1118
页数:19
相关论文
共 50 条
  • [31] A multinomial spline approximation scheme using spline quasi-interpolants
    Xu, Min
    Fang, Qin
    Wang, Ren-Hong
    Jiang, Zi-Wu
    Liu, Ming-Zeng
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5081 - 5089
  • [32] A simple method for constructing integro spline quasi-interpolants
    Boujraf, A.
    Sbibih, D.
    Tahrichi, M.
    Tijini, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 111 : 36 - 47
  • [33] Generalized spline quasi-interpolants and applications to numerical analysis
    Lamnii, A.
    Nour, M. Y.
    Sbibih, D.
    Zidna, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 408
  • [34] Superconvergent spline quasi-interpolants and an application to numerical integration
    Allouch, C.
    Boujraf, A.
    Tahrichi, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 : 90 - 108
  • [35] Construction of spherical spline quasi-interpolants based on blossoming
    Ibanez, M. J.
    Lamnii, A.
    Mraoui, H.
    Sbibih, D.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) : 131 - 145
  • [36] Construction of univariate spline quasi-interpolants with symmetric functions
    Serghini, A.
    Tijini, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 118 : 329 - 342
  • [37] On some multivariate quadratic spline quasi-interpolants on bounded domains
    Sablonnière, P
    MODERN DEVELOPMENTS IN MULTIVARIATE APPROXIMATION, 2003, 145 : 263 - 278
  • [38] Low-degree spline quasi-interpolants in the Bernstein basis
    Barrera, D.
    Eddargani, S.
    Ibanez, M. J.
    Remogna, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 457
  • [39] Hierarchical spline spaces: quasi-interpolants and local approximation estimates
    Hendrik Speleers
    Advances in Computational Mathematics, 2017, 43 : 235 - 255
  • [40] High order approximation by CCC-spline quasi-interpolants
    Bosner, Tina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442