Low-degree spline quasi-interpolants in the Bernstein basis

被引:4
|
作者
Barrera, D. [1 ]
Eddargani, S. [2 ]
Ibanez, M. J. [1 ]
Remogna, S. [3 ]
机构
[1] Univ Granada, Dept Appl Math, Campus Fuentenueva S-N, Granada 18071, Spain
[2] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[3] Univ Torino, Dept Math, Via C Alberto 10, I-10123 Turin, Italy
关键词
Quasi-interpolation; Bernstein basis; Bezier-ordinates;
D O I
10.1016/j.amc.2023.128150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose the construction of univariate low-degree quasi-interpolating splines in the Bernstein basis, considering C 1 and C 2 smoothness, specific polynomial re-production properties and different sets of evaluation points. The splines are directly de-termined by setting their Bernstein-Bezier coefficients to appropriate combinations of the given data values. Moreover, we get quasi-interpolating splines with special properties, im-posing particular requirements in case of free parameters. Finally, we provide numerical tests showing the performances of the proposed methods. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Bernstein quasi-interpolants on triangles
    Sablonniere, Paul
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 567 - 585
  • [2] Approximation by Bernstein quasi-interpolants
    Mache, P
    Mache, DH
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (01) : 159 - 175
  • [3] Pointwise approximation by Bernstein quasi-interpolants
    Guo, SS
    Zhang, GS
    Qi, QL
    Liu, LX
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (3-4) : 339 - 349
  • [4] Generalization of the left Bernstein quasi-interpolants
    Kageyama, Y
    JOURNAL OF APPROXIMATION THEORY, 1998, 94 (02) : 306 - 329
  • [5] Bivariate Simplex Spline Quasi-Interpolants
    D.Sbibih
    A.Serghini
    A.Tijini
    NumericalMathematics:Theory,MethodsandApplications, 2010, (01) : 97 - 118
  • [6] A Family of Spline Quasi-Interpolants on the Sphere
    O. Nouisser
    D. Sbibih
    Paul Sablonnière
    Numerical Algorithms, 2003, 33 : 399 - 413
  • [7] Bivariate Simplex Spline Quasi-Interpolants
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (01) : 97 - 118
  • [8] A family of spline quasi-interpolants on the sphere
    Nouisser, O
    Sbibih, D
    Sablonnière, P
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 399 - 413
  • [9] The Genuine Bernstein–Durrmeyer Operators and Quasi-Interpolants
    Margareta Heilmann
    Martin Wagner
    Results in Mathematics, 2012, 62 : 319 - 335
  • [10] Integro spline quasi-interpolants and their super convergence
    Wu, Jinming
    Ge, Wurong
    Zhang, Xiaolei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):