Low-degree spline quasi-interpolants in the Bernstein basis

被引:4
|
作者
Barrera, D. [1 ]
Eddargani, S. [2 ]
Ibanez, M. J. [1 ]
Remogna, S. [3 ]
机构
[1] Univ Granada, Dept Appl Math, Campus Fuentenueva S-N, Granada 18071, Spain
[2] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[3] Univ Torino, Dept Math, Via C Alberto 10, I-10123 Turin, Italy
关键词
Quasi-interpolation; Bernstein basis; Bezier-ordinates;
D O I
10.1016/j.amc.2023.128150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose the construction of univariate low-degree quasi-interpolating splines in the Bernstein basis, considering C 1 and C 2 smoothness, specific polynomial re-production properties and different sets of evaluation points. The splines are directly de-termined by setting their Bernstein-Bezier coefficients to appropriate combinations of the given data values. Moreover, we get quasi-interpolating splines with special properties, im-posing particular requirements in case of free parameters. Finally, we provide numerical tests showing the performances of the proposed methods. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Lp approximation by Bernstein-Kantorovich quasi-interpolants
    Li-xia Liu
    Ling Shi
    Shun-sheng Guo
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 200 - 208
  • [22] A simple method for constructing integro spline quasi-interpolants
    Boujraf, A.
    Sbibih, D.
    Tahrichi, M.
    Tijini, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 111 : 36 - 47
  • [23] Generalized spline quasi-interpolants and applications to numerical analysis
    Lamnii, A.
    Nour, M. Y.
    Sbibih, D.
    Zidna, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 408
  • [24] Lp approximation by Bernstein-Kantorovich quasi-interpolants
    LIU Li-xia SHI Ling GUO Shun-sheng College of Math. and Inform. Sci.
    Applied Mathematics:A Journal of Chinese Universities, 2009, (02) : 200 - 208
  • [25] A FAMILY OF BERNSTEIN QUASI-INTERPOLANTS ON[0,1]
    P.Sablonniere
    Approximation Theory and Its Applications, 1992, (03) : 62 - 76
  • [26] Superconvergent spline quasi-interpolants and an application to numerical integration
    Allouch, C.
    Boujraf, A.
    Tahrichi, M.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 : 90 - 108
  • [27] Construction of spherical spline quasi-interpolants based on blossoming
    Ibanez, M. J.
    Lamnii, A.
    Mraoui, H.
    Sbibih, D.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (01) : 131 - 145
  • [28] Cubic spline quasi-interpolants on Powell–Sabin partitions
    A. Lamnii
    M. Lamnii
    H. Mraoui
    BIT Numerical Mathematics, 2014, 54 : 1099 - 1118
  • [29] Construction of univariate spline quasi-interpolants with symmetric functions
    Serghini, A.
    Tijini, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 118 : 329 - 342
  • [30] Near minimally normed spline quasi-interpolants on uniform partitions
    Barrera, D
    Ibáñez, MJ
    Sablonnière, P
    Sbibih, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 181 (01) : 211 - 233