Polar forms and quadratic spline quasi-interpolants on Powell-Sabin partitions

被引:37
|
作者
Sbibih, D. [1 ]
Serghini, A. [1 ]
Tijini, A. [1 ]
机构
[1] Univ Mohammed 1, ESTO, MATSI Lab, Oujda, Morocco
关键词
Polar forms; Quasi-interpolation; Quadratic splines; Powell-Sabin partitions;
D O I
10.1016/j.apnum.2008.03.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we introduce the Powell-Sabin B-spline representation of quadratic polynomials or splines in terms of their polar forms. We use this B-representation for constructing several differential or discrete quasi-interpolants which have an optimal approximation order. This new approach is simple and provides an efficient tool for describing many schemes of approximation involving values and (or) derivatives of a given function. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:938 / 958
页数:21
相关论文
共 50 条
  • [1] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Carla Manni
    Paul Sablonnière
    [J]. Advances in Computational Mathematics, 2007, 26 : 283 - 304
  • [2] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Manni, Carla
    Sablonniere, Paul
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 283 - 304
  • [3] Superconvergent quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2015, 87 : 74 - 86
  • [4] Quadratic spherical spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Mraoui, H.
    Sbibih, D.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 1094 - 1109
  • [5] Cubic spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Lamnii, M.
    Mraoui, H.
    [J]. BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 1099 - 1118
  • [6] Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sablonniere, P.
    Sbibih, D.
    Tahrichi, M.
    [J]. BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 175 - 192
  • [7] Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions
    P. Sablonnière
    D. Sbibih
    M. Tahrichi
    [J]. BIT Numerical Mathematics, 2013, 53 : 175 - 192
  • [8] Quadratic spline quasi-interpolants on Powell-Sabin partitions (vol 26, pg 237, 2007)
    Manni, Carla
    Sablonniere, Paul
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (01) : 94 - 94
  • [9] Cubic spline quasi-interpolants on Powell–Sabin partitions
    A. Lamnii
    M. Lamnii
    H. Mraoui
    [J]. BIT Numerical Mathematics, 2014, 54 : 1099 - 1118
  • [10] Superconvergent C1 cubic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, Driss
    Serghini, Abdelhafid
    Tijini, Ahmed
    Zidna, Ahmed
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 797 - 821