Cubic spline quasi-interpolants on Powell-Sabin partitions

被引:9
|
作者
Lamnii, A. [1 ]
Lamnii, M. [2 ]
Mraoui, H. [2 ]
机构
[1] Univ Hassan First, Fac Sci & Technol, Settat, Morocco
[2] Univ Mohammed First, Fac Sci, Oujda, Morocco
关键词
Super spline; Powell-Sabin splines; Normalized B-splines; Blossoms; Polarization identity; Quasi-interpolation; B-SPLINES; NORMALIZED BASIS; SPACE; CONSTRUCTION;
D O I
10.1007/s10543-014-0489-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
By using the polarization identity, we propose a family of quasi-interpolants based on bivariate cubic super splines defined on triangulations with a Powell-Sabin refinement. Their spline coefficients only depend on a set of local function values. The quasi-interpolants reproduce cubic polynomials and have an optimal approximation order.
引用
收藏
页码:1099 / 1118
页数:20
相关论文
共 50 条
  • [1] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Carla Manni
    Paul Sablonnière
    [J]. Advances in Computational Mathematics, 2007, 26 : 283 - 304
  • [2] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Manni, Carla
    Sablonniere, Paul
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 283 - 304
  • [3] Cubic spline quasi-interpolants on Powell–Sabin partitions
    A. Lamnii
    M. Lamnii
    H. Mraoui
    [J]. BIT Numerical Mathematics, 2014, 54 : 1099 - 1118
  • [4] Superconvergent quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2015, 87 : 74 - 86
  • [5] Quadratic spherical spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Mraoui, H.
    Sbibih, D.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 1094 - 1109
  • [6] Superconvergent C1 cubic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, Driss
    Serghini, Abdelhafid
    Tijini, Ahmed
    Zidna, Ahmed
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 797 - 821
  • [7] Polar forms and quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 938 - 958
  • [8] Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sablonniere, P.
    Sbibih, D.
    Tahrichi, M.
    [J]. BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 175 - 192
  • [9] Numerical integration based on bivariate quadratic spline quasi-interpolants on Powell-Sabin partitions
    P. Sablonnière
    D. Sbibih
    M. Tahrichi
    [J]. BIT Numerical Mathematics, 2013, 53 : 175 - 192
  • [10] Quadratic spline quasi-interpolants on Powell-Sabin partitions (vol 26, pg 237, 2007)
    Manni, Carla
    Sablonniere, Paul
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (01) : 94 - 94