Cubic spline quasi-interpolants on Powell-Sabin partitions

被引:10
|
作者
Lamnii, A. [1 ]
Lamnii, M. [2 ]
Mraoui, H. [2 ]
机构
[1] Univ Hassan First, Fac Sci & Technol, Settat, Morocco
[2] Univ Mohammed First, Fac Sci, Oujda, Morocco
关键词
Super spline; Powell-Sabin splines; Normalized B-splines; Blossoms; Polarization identity; Quasi-interpolation; B-SPLINES; NORMALIZED BASIS; SPACE; CONSTRUCTION;
D O I
10.1007/s10543-014-0489-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
By using the polarization identity, we propose a family of quasi-interpolants based on bivariate cubic super splines defined on triangulations with a Powell-Sabin refinement. Their spline coefficients only depend on a set of local function values. The quasi-interpolants reproduce cubic polynomials and have an optimal approximation order.
引用
收藏
页码:1099 / 1118
页数:20
相关论文
共 50 条
  • [31] Integro spline quasi-interpolants and their super convergence
    Wu, Jinming
    Ge, Wurong
    Zhang, Xiaolei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):
  • [32] A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation
    Lamnii, M.
    Mraoui, H.
    Tijini, A.
    Zidna, A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 : 108 - 124
  • [33] Integro spline quasi-interpolants and their super convergence
    Jinming Wu
    Wurong Ge
    Xiaolei Zhang
    Computational and Applied Mathematics, 2020, 39
  • [34] Quadratic spline quasi-interpolants and collocation methods
    Foucher, Francoise
    Sablonniere, Paul
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (12) : 3455 - 3465
  • [35] Powell-Sabin spline based multilevel preconditioners for the biharmonic equation
    Maes, Jan
    Bultheel, Adhemar
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (05) : 527 - 530
  • [36] Algebraic hyperbolic spline quasi-interpolants and applications
    Eddargani, S.
    Lamnii, A.
    Lamnii, M.
    Sbibih, D.
    Zidna, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 347 : 196 - 209
  • [37] Increasing the approximation order of spline quasi-interpolants
    Barrera, D.
    Guessab, A.
    Ibanez, M. J.
    Nouisser, O.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 252 : 27 - 39
  • [38] QUASI-INTERPOLANTS FROM SPLINE INTERPOLATION OPERATORS
    SMITH, PW
    WARD, JD
    CONSTRUCTIVE APPROXIMATION, 1990, 6 (01) : 97 - 110
  • [39] Smoothing scattered data with a monotone Powell-Sabin spline surface
    Willemans, K
    Dierckx, P
    NUMERICAL ALGORITHMS, 1996, 12 (1-2) : 215 - 232
  • [40] A multinomial spline approximation scheme using spline quasi-interpolants
    Xu, Min
    Fang, Qin
    Wang, Ren-Hong
    Jiang, Zi-Wu
    Liu, Ming-Zeng
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5081 - 5089